首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effects of shear, uniaxial extension and temperature on the flow-induced crystallization of two different types of high-density polyethylene (a metallocene and a ZN-HDPE) are examined using rheometry. Shear and uniaxial extension experiments were performed at temperatures below and well above the peak melting point of the polyethylenes in order to characterize their flow-induced crystallization behavior at rates relevant to processing (elongational rates up to 30 s − 1 and shear rates 1 to 1,000 s − 1 depending on the application). Generally, strain and strain rate found to enhance crystallization in both shear and elongation. In particular, extensional flow was found to be a much stronger stimulus for polymer crystallization compared to shear. At temperatures well above the melting peak point (up to 25°C), polymer crystallized under elongational flow, while there was no sign of crystallization under simple shear. A modified Kolmogorov crystallization model (Kolmogorov, Bull Akad Sci USSR, Class Sci, Math Nat 1:355–359, 1937) proposed by Tanner and Qi (Chem Eng Sci 64:4576–4579, 2009) was used to describe the crystallization kinetics under both shear and elongational flow at different temperatures.  相似文献   

2.
The sensitivity of flow-induced crystallisation (FIC) to the nature of flow type is demonstrated using a high-density polyethylene (HDPE) for two different flow geometries. A contraction–expansion slit geometry was used to create a mixed, but primarily simple shear flow, while a cross-slot geometry provided a region within the flow of high extension. Flow-induced birefringence was captured at a melt processing temperature of 155 °C to identify the principal stress difference within the two flows and determine regions of higher stress within the HDPE. The experiments were then repeated at 125 °C, and FIC was identified using bright-field observation. Crystallisation was observed within the regions that previously exhibited high stress levels. It was found that lower deformation rates in pure shear were required when compared with simple shear to create the crystal filaments.  相似文献   

3.
Bitumen modification with ethylene-vinyl acetate (EVA), in a wide range temperatures (between ??30 and 100 °C), has been studied as a function of polymer concentration and EVA characteristics (vinyl acetate (VA) content and melt flow index (MFI)). Viscous flow, dynamic shear (DSR) temperature sweep, and technological tests were conducted to assess binder performance at medium-to-high in-service temperatures. Evaluation of binder low-temperature viscoelastic behavior has been performed using a solid rectangular fixture (SRF) in torsional mode, either in the linear viscoelastic region or under non-linear conditions (by strain breakage tests between ??30 and 0 °C). Further microstructural analysis based on modulated differential scanning calorimetry (MDSC) and optical microscopy was conducted to support rheological and technological results. Hence, total crystalline fraction (related to the VA content and polymer concentration) turned out to be a key parameter to achieve a suitable binder modification at medium-high temperatures. In addition, MFI appears to be an important EVA parameter at low temperatures, as it was found that lower MFI values enhanced resistance to low-temperature cracking.  相似文献   

4.
A filament stretching extensional rheometer with a custom-built oven was used to investigate the effect of uniaxial flow on the crystallization of polypropylene. Prior to stretching, samples were heated to a temperature well above the melt temperature to erase their thermal and mechanical histories and the Janeschitz-Kriegl protocol was applied. The samples were stretched at extension rates in the range of 0.01 s-1 £ [(e)\dot] £ 0.75 s-10.01\,\mbox{s}^{-1}\le \dot{{\varepsilon }}\le 0.75\,{\rm s}^{-1} to a final strain of ε = 3.0. After stretching, the samples were allowed to crystallize isothermally. Differential scanning calorimetry was applied to the crystallized samples to measure the degree of crystallinity. The results showed that a minimum extension rate is required for an increase in percent crystallization to occur and that there is an extension rate for which percent crystallization is maximized. No increase in crystallization was observed for extension rates below a critical extension rate corresponding to a Weissenberg number of approximately Wi = 1. Below this Weissenberg number, the flow is not strong enough to align the contour path of the polymer chains within the melt and as a result there is no change in the final percent crystallization from the quiescent state. Beyond this critical extension rate, the percent crystallization was observed to increase to a maximum, which was 18% greater than the quiescent case, before decaying again at higher extension rates. The increase in crystallinity is likely due to flow-induced orientation and alignment of contour path of the polymer chains in the flow direction. Polarized light microscopy verified an increase in number of spherulites and a decrease in spherulite size with increasing extension rate. In addition, small angle X-ray scattering showed a 7% decrease in inter-lamellar spacing at the transition to flow-induced crystallization. Although an increase in strain resulted in a slight increase in percent crystallization, no significant trends were observed. Crystallization kinetics were examined as a function of extension rate by observing the time required for molten samples to crystallize under uniaxial flow. The crystallization time was defined as the time at which a sudden increase in the transient force measurement was observed. The crystallization time was found to decrease as one over the extension rate, even for extension rates where no increase in percent crystallization was observed. As a result, the onset of extensional-flow-induced crystallization was found to occur at a constant value of strain equal to ε c  = 5.8.  相似文献   

5.
Melt failure of a commercial ABS polymer in uniaxial extension over ranges of elongation rate ([(e)\dot] = 0.01 - 1.0 s - 1\dot \varepsilon = 0.01 - 1.0\,{\rm s}^{ - 1} ) and temperature (140-200 °C) was investigated. Four methods of experimental and numerical calculation for determination of modes and criteria of melt failure in uniaxial extension were investigated: 1) visual observation of necking; 2) visual observation of non-uniform flow during stress relaxation after cessation of steady elongation; 3) calculation of the Considère criterion from the measured elongational stress-strain curve; 4) numerical calculation of inflection point (‘C2/‘)2=0) from the tensile stress-strain curve. In addition, under higher Deborah number conditions the critical Hencky strains at Considère criterion were calculated using PSM model parameters (! and #) and were compared with those obtained from the measured elongational stress-strain curve. The relationship between these failure modes is discussed in terms of rheological properties of the polymer, putting emphasis on the relationship with the thermoforming process. The Considère criterion appears to be the most effective indicator of the non-uniform deformation of ABS melt in uniaxial extension under conditions where cohesive fracture does not occur. The rheological properties such as elongational viscosity, strain hardening and/or strain softening, and their temperature dependence play an important role in determining the growth and transition of melt failure of ABS polymer in uniaxial extension.  相似文献   

6.
Simple shear rheological properties of solutions of a high molecular weight (8 × 106 g/mol) poly(ethylene oxide) (PEO) and its mixtures with sodium dodecyl sulfate (SDS) have been studied. Shear-thickening effects set in at a critical shear rate for PEO solutions. This particular behavior has not been reported for aqueous solutions of PEO, to our knowledge. The effect is attributed to PEO flow-induced self-aggregation. The experiments were performed in different operation modes (strain rate and stress controlled) and with different geometries (double wall Couette and Couette) and identical viscosities were obtained, which rules out flow instabilities as possible cause for the shear-thickening effect. Shear thickening was observed in the temperature range 15–50°C. Flow-induced PEO degradation occurs for shear rates in the shear-thickening regime, which indicates substantial chain deformation and accumulated stresses in the molecule when shear thickening occurs. Addition of SDS to the PEO solutions induces the formation of surfactant polymer complexes that preserve the characteristic shear-thickening effect.  相似文献   

7.
In this paper it is shown that the diffraction-grating technique and the optical-displacement technique used by the writer for the study of plastic wave propagation at room temperature, may both be extended to within 100° F of the melting point of aluminum. In addition to the measurement of stress history at the impact face obtained by the extension of the load-bar technique to elevated temperatures, strain-time, surface angle-time, time of contact, coefficient of restitution, and displacement-time behavior at the free end of the struck specimen may all be determined at elevated temperatures. Typical strain-time behavior is shown at 800, 1000, and 1100° F, for three types of impact situations.  相似文献   

8.
Poly(vinyl chloride) (PVC)/di-isononyl phthalate systems with PVC content of 45.5 (PVC8) and 70.4 wt% (PVC6) were prepared by a hot roller at 150 °C and press molded at 180 °C. The dynamic viscoelasticity and elongational viscosity of PVC8 and PVC6 were measured in the temperature range from 150 to 220 °C. We have found that the storage and loss shear moduli, G′ and G″, of PVC8 and PVC6 exhibited the power-law dependence on the angular frequency ω at 190 and 210 °C, respectively. Correspondingly, the tan δ values did not depend on ω. These temperatures indicate the critical gel temperature T gel of each system. The critical relaxation exponent n obtained from these data was 0.75 irrespective of PVC content, which was in agreement with the n values reported previously for the low PVC concentration samples. These results suggest that the PVC gels of different plasticizer content have a similar fractal structure. Below T gel, the gradual melting of the PVC crystallites takes place with elevating temperature, and above T gel, a densely connected network throughout the whole system disappears. Correspondingly, the elongational viscosity behavior of PVC8 and PVC6 exhibited strong strain hardening below T gel, although it did not show any strain hardening above T gel. These changes in rheological behavior are attributed to the gradual melting of the PVC crystallites worked as the cross-linking domains in this physical gel, thereby inapplicability of the of time–temperature superposition for PVC/plasticizer systems.  相似文献   

9.
Deformation has a significant influence on the crystallization process in a number of polymers. In this paper, the response of a recently developed model for crystallizing polymers is investigated when subject to uni-, bi-axial and constant width extensions for a range of strain rates. Both the loading and unloading behavior are examined for these deformations. The particular model studied here was developed to capture the effect of strain induced crystallization in polymers and has been applied to model crystallization in polyethylene terephthalate at temperatures just above its glass transition temperature. The model has been formulated using the notion of multiple natural configurations within a full thermodynamic framework. The connection between micro-structural changes taking place in the polymer and the form of the model are elucidated. The interplay between the relaxation processes, the rate of deformation and their combined effect on crystallization is illustrated. The results show an earlier onset of crystallization for high strain rates due to stretching of the polymer network. At low strain rates however, crystallization is not observed as the polymer network is able to relax during the deformation. A sharp upturn in the stress is observed after the onset of crystallization due to the formation of a rigid crystalline phase. The unloading curves clearly show a hysteric behavior with the amount of dissipation increasing for increasing values of strain rate. These results compare favorably with experimental observations available in literature.  相似文献   

10.
In this paper, the effect of shear on the flow-induced crystallization (FIC) of several polypropylenes of various macrostructures was studied using rheometry combined with polarized microscopy. Generally, an increase in strain and strain rate or decrease of temperature is found to decrease the thermodynamic barrier for crystal formation and thus enhancing crystallization kinetics at temperatures between the melting and crystallization points. Secondly, popular models based on suspension theory which are used to relate the degree of crystallinity to normalized rheological functions (such as viscosity) are validated experimentally. For this purpose, the space filling of crystals in the polarized micrographs determined from image processing was plotted as a function of normalized viscosity under various shear rates. It is found that the constant(s) of various suspension models should be dependent on the flow parameters in order for the suspension models to describe the effect of shear on FIC, particularly at higher shear rates.  相似文献   

11.
Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, a new generation of gamma titanium aluminide alloys, commonly referred to as Gamma-Met PX, has been developed by GKSS, Germany. These alloys have been observed to have superior strength and better oxidation resistance at elevated temperatures when compared with conventional gamma titanium aluminides.The present paper discusses results of a study to understand the uniaxial mechanical behavior in both compression and tension of Gamma-Met PX at elevated temperatures and high strain rates. The compression and tensile tests are conducted using a modified Split-Hopkinson Bar apparatus at test temperatures ranging from room temperature to 900 °C and strain rates of up to 3500 s−1. Under uniaxial compression, in the temperature range from room to 600 °C, the flow stress is observed to be nearly independent of test temperature. However, at temperatures higher than 600 °C thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 °C. The room temperature tensile tests show negligible strain-rate dependence on both yield stress and flow stress. With an increase in test temperature from room to 900 °C, the material shows a drop in both yield and flow stress at all levels of plastic strain. However, the measured flow stress is still higher when compared to nickel based super-alloys and other gamma titanium aluminides under similar test conditions. Also, no anomaly in yield stress is observed up to 900 °C.  相似文献   

12.
Dynamic and transient shear and elongation flow experiments along with gel permeation chromatography (GPC) and differential scanning calorimetry (DSC) analysis are performed on linear low-density polyethylenes (LLDPEs) irradiated at doses below 25 kGy. GPC data indicate no changes in the molar mass distribution, and there are almost no changes in melt and crystallization temperatures, likewise. Contrary, dynamic shear rheological behavior including thermorheological complexity, type of reduced van Gurp-Palmen curves, and zero shear-rate viscosities all disclose growing levels of long-chain branching with irradiation dose. An inverse tube model is developed for binary blend of linear and star chains and used to extract the fraction of the branched components. Modeling results reveal progressive increase in the length and fraction of star chains, as evidenced by appearance of an anomalous double overshoot in the transient shear viscosities. Detection of strain hardening in extensional stress growth coefficient data, well-quantified by molecular stress function model, is also in agreement with the predictions of tube model.  相似文献   

13.
The time-dependent strain cyclic characteristics and ratchetting behaviours of SS304 stainless steel were investigated by uniaxial/multiaxial cyclic loading tests at room and elevated temperatures (350 and 700 °C). The effects of loading rate, peak/valley strain or stress holds, ambient temperature and non-proportional loading path on the cyclic softening/hardening and ratchetting behaviours of the material were discussed. It is shown that: the cyclic deformation of the material presents remarkable time-dependence at room temperature and 700 °C; the cyclic hardening feature and ratchetting strain depend significantly on straining or stressing rate, hold-time, ambient temperature and the non-proportionality of loading path; the time-dependent ratchetting is resulted from the slight opening of hysteresis loop and visco-plasticity together, and the viscosity is a dominating factor at 700 °C; at 350 °C, abnormal rate-dependence and quick shakedown of ratchetting are observed due to the dynamic strain aging of the material at this temperature. Some significant conclusions are obtained, which are useful to construct a constitutive model to describe the time-dependent ratchetting behaviour of the material. It is also stated that the unified visco-plastic constitutive model discussed here cannot provide reasonable simulation to the time-dependent ratchetting at 700 °C, especially to that with certain peak/valley stress hold, since the effect of the high viscosity on time-dependent ratchetting cannot be properly described by using a unified visco-plastic flow rule.  相似文献   

14.
Soft polymer roll covers, which are used in certain positions of paper manufacturing machines, have a vital role in the dynamics of two mating rotating rolls (i.e., nip dynamics). The polymer covers are often used in moist conditions where the loading rates are rather high and temperatures may vary from 45 to 60°C. In this paper, we study the dynamic mechanical behavior of two soft polyurethane composite roll covers under different conditions of temperature, moisture, and loading rate. For the tests in compression, both servohydraulic materials testing machines and the split Hopkinson pressure bar technique were used in the strain rate range of 0.001–1500 s−1. The specimens, which were to be tested under moist conditions, were immersed in paper machine water (pH 4.5) until saturated moisture content was reached. The materials showed remarkable softening as well as decrease in the strain rate sensitivity in moist conditions.  相似文献   

15.
In Part 2 of this study, extensive deformation tests were carried out on the nickel-base polycrystalline superalloy IN738LC under isothermal and anisothermal conditions between 450 and 950 °C. Under the isothermal conditions, the material showed almost no rate/time-dependency below 700 °C, while it showed distinct rate/time-dependency above 800 °C. Regarding the cyclic deformation, slight cyclic hardening behavior was observed when the temperature was below 700 °C and the imposed strain rate was fast, whereas in the case of the temperature above 800 °C or under slower strain rate conditions, the cyclic hardening behavior was scarcely observed. Unique inelastic behavior was observed under in-phase and out-of-phase anisothermal conditions: with an increase in the number of cycles, the stress at higher temperatures became smaller and the stress at lower temperatures became larger in absolute value although the stress range was approximately constant during the cyclic loading. In other words, the mean stress continues to evolve cycle-by-cycle in the direction of the stress at lower temperatures. Based on the experimental results, it was assumed that evolution of the variable Y that had been incorporated into a kinematic hardening rule in Part 1 of this study is active under higher temperatures and is negligible under lower temperatures. The material constants used in the constitutive equations were determined with the isothermal data, and were expressed as functions of temperature empirically. The extended viscoplastic constitutive equations were applied to the anisothermal cyclic loading as well as the monotonic tension, stress relaxation, creep and cyclic loading under the isothermal conditions. It was demonstrated that the present viscoplastic constitutive model was successful in describing the inelastic behavior of the material adequately, including the anomalous inelastic behavior observed under the anisothermal conditions, owing to the consideration of the variable Y.  相似文献   

16.
17.
A poly(vinyl chloride) (PVC,  Mw = 102×103)(\mbox{PVC,}\;{\rm M}_{\rm w} =102\times 10^3) di-octyl phthalate (DOP) gel with PVC content of 20 wt.% was prepared by a solvent evaporation method. The dynamic viscoelsticity and elongational viscosity of the PVC/DOP gel were measured at various temperatures. The gel exhibited a typical sol–gel transition behavior with elevating temperature. The critical gel temperature (Tgel) characterized with a power–law relationship between the storage and loss moduli, G and G, and frequency ω, G¢=G¢¢/tan  ( np/2 ) μ wn{G}^\prime={G}^{\prime\prime}{\rm /tan}\;\left( {{n}\pi {\rm /2}} \right)\propto \omega ^{n}, was observed to be 152°C. The elongational viscosity of the gel was measured below the Tgel. The gel exhibited strong strain hardening. Elongational viscosity against strain plot was independent of strain rate. This finding is different from the elongational viscosity behavior of linear polymer solutions and melts. The stress–strain relations were expressed by the neo-Hookean model at high temperature (135°C) near the Tgel. However, the stress–strain curves were deviated from the neo-Hookean model at smaller strain with decreasing temperature. These results indicated that this physical gel behaves as the neo-Hookean model at low cross-linking point, and is deviated from the neo-Hookean model with increasing of the PVC crystallites worked as the cross-linking junctions.  相似文献   

18.
Two-level cumulative-damage fatigue tests were conducted on tubular 304 stainless-steel specimen under biaxial-strain conditions at elevated temperatures. Effects of temperature, biaxiality and sequence of straining were investigated. The experimental results are forwarted with a new approach that utilizes the Miner cumulative-damage rule. This approach has shown that fatigue damage at elevated temperatures of 538°C (1000°F) and 649°C (1200°F) accelerates and decelerates as a result of time of exposure to a given loading sequence. The effect of biaxiality is shown through the behavior of the material under axial and shear-strain components. The axial (tensile) strain component has shown to be the severest detrimental damaging component when compared to a shear-strain component. A damage mechanism emerges from the interaction of temperature and loading sequence. Its significance can be observed only when a certain life ratio has been exhausted.  相似文献   

19.
A new apparatus for stretching polypropylenes at elevated temperatures below the melting point at high deformation speeds (up to 750 mm/s) is described. In the temperature range of 140-160 °C the tensile behavior of polypropylene undergoes a shift from the ductile to the quasi-rubber-like deformation behavior. Furthermore, the deformation behavior is strongly affected by the strain rate. The homogeneity of sample deformation increases with the deformation rate. Furthermore, the influence of the cast film morphology on the uniaxial deformation behavior is investigated and discussed in terms of the degree of crystallinity and crystallite size. The degree of the residual crystallinity plays a decisive role for the deformation behavior. At similar degree of crystallinity, the yield stress is significantly influenced by the crystallite size in a way that the larger the crystallite size the higher the yield stress.  相似文献   

20.
Experiments on the melting of a vertical ice layer immersed in immiscible liquid yielded quantitative results both for the timewise evolution of the melting front and the heat transfer. Vegetable oil, which was contained in a rectangular vessel, was adopted as a testing liquid. A bubble-free ice block stuck on a cooled wall was installed vertically in the vessel. The experiments were carried out for the immiscible liquid temperatures from 7.6 to 30.0 °C, while for the cooled wall temperatures from 0 to ?11.5 °C. The flow structure of the liquid and the melting front were extensively observed and recorded photographically. It was found that the heat transfer and the rate of melting are significantly affected by a couple of fluid motions of both the water melt induced by melting of ice and the immiscible liquid based on free convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号