首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nonlinear strain rate sensitivity, multiple creep and recovery behavior of polyphenylene oxide (PPO), which were explored through strain rate-controlled experiments at ambient temperature by Khan [The deformation behavior of solid polymers and modeling with the viscoplasticity theory based overstress, Ph.D. Thesis, Rensselaer Polytechnic Institute, New York], are modeled using the modified viscoplasticity theory based on overstress (VBO). In addition, VBO used by Krempl and Ho [An overstress model for solid polymer deformation behavior applied to Nylon 66, ASTM STP 1357, 2000, p. 118] and the classical VBO are used to demonstrate the improved modeling capabilities of VBO for solid polymer deformation. The unified model (VBO) has two tensor valued state variables, the equilibrium and kinematic stresses and two scalar valued states variables, drag and isotropic stresses. The simulations include monotonic loading and unloading at various strain rates, multiple creep and recovery at zero stress. Since creep behavior has been found to be profoundly influenced by the level of the stress, the tests are performed at different stresses above and below the yield point. Numerical results are compared to experimental data. It is shown that nonlinear rate sensitivity, nonlinear unloading, creep and recovery at zero stress can be reproduced using the modified viscoplasticity theory based on overstress.  相似文献   

2.
In this work, the large deformation behaviour under monotonic loading and unloading of a high density polyethylene (HDPE) is studied. To analyze the nonlinear time-dependent response of the material, mechanical tests were conducted at room temperature under constant true strain rates and stress relaxation conditions. A physically-based inelastic model written under finite strain formulation is proposed to describe the mechanical behaviour of HDPE. In the model, the inelastic mechanisms involve two parallel elements: a visco-hyperelastic network resistance acting in parallel with a viscoelastic–viscoplastic intermolecular resistance where the amorphous and crystalline phases are explicitly taken into consideration. The semicrystalline polymer is considered as a two-phase composite. The influence of the crystallinity on the loading and unloading behaviour is investigated. Numerical results are compared to experimental data. It is shown that the model is able to accurately reproduce the experimental observations corresponding to monotonic loading, unloading and stress relaxation behaviours at different strain levels. Finally, the model capabilities to capture cyclic loading–unloading behaviour up to large strains are discussed. To demonstrate the improved modelling capabilities, simulations are also performed using the original model of Boyce et al. [Boyce, M.C., Socrate, S., Llana, P.G., 2000. Constitutive model for the finite deformation stress–strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer 41, 2183–2201] modified by Ahzi et al. [Ahzi, S., Makradi, A., Gregory, R.V., Edie, D.D., 2003. Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. Mechanics of Materials 35, 1139–1148].  相似文献   

3.
In this paper, the film casting process has been simulated using a new model developed recently using the framework of multiple natural configurations to study crystallization in polymers (see Rao and Rajagopal Z. Angew. Math. Phys. 53 (2002) 265; Polym. Eng. Sci. 44(1) (2004) 123; Simulation of the film blowing process for semicrystalline polymers, in press, 2004). In the film casting process, the material starts out as a viscoelastic melt and undergoes deformation and cooling, resulting in a semi-crystalline solid. In order to model the complex changes taking place in the material and predict the behavior of the final solid it is important to use models that are capable of describing these changes. The model used here has been formulated within a general thermodynamic framework that is capable of describing dissipative processes. In addition it handles in a direct manner the change of symmetry in the material; it thus provides a good basis for studying the crystallization process in polymers. The polymer melt is modeled as a rate type viscoelastic fluid and the crystalline solid polymer is modeled as an anisotropic elastic solid. The initiation criterion, marking the onset of crystallization and equations governing the crystallization kinetics arise naturally in this setting in terms of the appropriate thermodynamic functions. The mixture region, wherein the material transitions from a melt to a semi-crystalline solid, is modeled as a mixture of a viscoelastic fluid and an elastic solid. This is in marked contrast to earlier approaches where in the simulation has been done assuming that the material was a viscous fluid and the transition to a solid like behavior is achieved by increasing the viscosity to a large value resulting in a highly viscous fluid and not an elastic solid. The results of our simulations compare well against experimental data available in literature. In addition to these quantitative comparisons have carried out parametric study to study the influence of the different parameters on the film casting process.  相似文献   

4.
A two-phase self-consistent model for large deformation stress–strain behavior and strain-induced crystallization in polymers at temperatures above the glass transition temperature is proposed. In this model, a composite framework is utilized to deal with the presence of the two phases, crystalline and amorphous, after the onset of strain-induced crystallization. The plastic behavior of each phase is approached by a widely used viscoplastic power law. The crystallization rate is expressed following a non-isothermal phenomenological expression based on the modified Avrami equation. Our predicted results are compared to the upper and lower bound estimates and to the existing experimental results in which good agreement is found with these experiments.  相似文献   

5.
Viscoelasticity characterizes the most important mechanical behavior of elastomers. Understanding the viscoelasticity, especially finite strain viscoelasticity, of elastomers is the key for continuation of their dedicated use in industrial applications. In this work, we present a mechanistic and physics-based constitutive model to describe and design the finite strain viscoelastic behavior of elastomers. Mathematically, the viscoelasticity of elastomers has been decomposed into hyperelastic and viscous parts, which are attributed to the nonlinear deformation of the cross-linked polymer network and the diffusion of free chains, respectively. The hyperelastic deformation of a cross-linked polymer network is governed by the cross-linking density, the molecular weight of the polymer strands between cross-linkages, and the amount of entanglements between different chains, which we observe through large scale molecular dynamics (MD) simulations. Moreover, a recently developed non-affine network model (Davidson and Goulbourne, 2013) is confirmed in the current work to be able to capture these key physical mechanisms using MD simulation. The energy dissipation during a loading and unloading process of elastomers is governed by the diffusion of free chains, which can be understood through their reptation dynamics. The viscous stress can be formulated using the classical tube model (Doi and Edwards, 1986); however, it cannot be used to capture the energy dissipation during finite deformation. By considering the tube deformation during this process, as observed from the MD simulations, we propose a modified tube model to account for the finite deformation behavior of free chains. Combing the non-affine network model for hyperelasticity and modified tube model for viscosity, both understood by molecular simulations, we develop a mechanism-based constitutive model for finite strain viscoelasticity of elastomers. All the parameters in the proposed constitutive model have physical meanings, which are signatures of polymer chemistry, physics or dynamics. Therefore, parametric materials design concepts can be easily gleaned from the model, which is also demonstrated in this study. The finite strain viscoelasticity obtained from our simulations agrees qualitatively with experimental data on both un-vulcanized and vulcanized rubbers, which captures the effects of cross-linking density, the molecular weight of the polymer chain and the strain rate.  相似文献   

6.
Photomechanics of light-activated polymers   总被引:1,自引:0,他引:1  
Light-activated polymers are an exciting class of modern materials that respond mechanically when irradiated by light at particular wavelengths. While details of the mechanisms that connect the optical excitation to mechanical behavior are complex and differ from material to material, there is sufficient commonality among them to permit the development of a generalized modeling framework to describe the photomechanics. The features shared by light-activated polymers involve light interacting with the material, which triggers photochemical reactions that alter the structure of the crosslinked polymer network. Many such structural alterations result in an evolution of the polymer network, and subsequent macroscopic deformation. When this process is appropriately executed it can enable a photomechanical shape-memory effect. In this paper, we develop a three-dimensional finite-deformation modeling framework to describe the photomechanical response of light-activated polymer systems. This framework integrates four coupled phenomena that contribute to macroscopic photomechanical behavior: photophysics, photochemistry, chemomechanical coupling, and mechanical deformation. The chemomechanical coupling consists of chemically induced structural alterations of the crosslinked network that result in subsequent deformation. We describe this behavior through a decomposition of the crosslinked network into two components consisting of an original network and a photochemically altered network; both evolve during photomechanical deformation. The modeling framework presented in this paper is sufficiently general that it is applicable to light-activated polymer systems that operate with various mechanisms in each of the four areas. Using this modeling approach, we develop constitutive models for two recently developed light-activated polymer systems [Lendlein, A., Hongyan, J., Junger, O., Langer, R., 2005. Light-induced shape-memory polymers. Nature 434 (7035) 879; Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., 2005. Photoinduced plasticity in crosslinked polymers. Science 308 (5728) 1615]. For the material developed by Scott and his co-workers we validate our model by measuring and numerically simulating photo-induced stress relaxation and bending deformation and obtain good agreement between measurements and predictions. Finally, we use the model to study the effects of photomechanical parameters (applied strain magnitude, irradiation time and intensity, and photoabsorber concentration) and the behavior of the network evolution rule on the material response.  相似文献   

7.
Continuous loading and unloading experiments are performed at different strain rates to characterize the large deformation behavior of polyurea under compressive loading. In addition, uniaxial compression tests are carried out with multistep strain history profiles. The analysis of the experimental data shows that the concept of equilibrium path may not be applied to polyurea. This finding implies that viscoelastic constitutive models of the Zener type are no suitable for the modeling of the rate dependent behavior of polyurea. A new constitutive model is developed based on a rheological model composed of two Maxwell elements. The soft rubbery response is represented by a Gent spring while nonlinear viscous evolution equations are proposed to describe the time-dependent material response. The eight material model parameters are identified for polyurea and used to predict the experimentally-measured stress-strain curves for various loading and unloading histories. The model provides a good prediction of the response under monotonic loading over wide range of strain rates, while it overestimates the stiffness during unloading. Furthermore, the model predictions of the material relaxation and viscous dissipation during a loading-unloading cycle agree well with the experiments.  相似文献   

8.
The deformation of polymers under high-rate loading conditions is a governing factor in their use in impact-resistant applications, such as protective shields, safety glass windows and transparent armor. In this paper, Taylor impact experiments were conducted to examine the mechanical behavior of polycarbonate (PC), under conditions of high strain rate (∼105 s−1) and inhomogeneous deformation. High-speed photography was used to monitor the progression of deformation within the sample. A recently developed three-dimensional large strain rate-dependent elastic–viscoplastic constitutive model which describes the high-rate behavior of glassy polymers was used together with the ABAQUS/Explicit finite-element code to simulate several Taylor impact conditions. The simulation results are compared directly with experimental images for a range in initial rod dimensions and velocities. Final deformed shapes are found to correspond with those obtained experimentally, demonstrating the ability to predict complex inhomogeneous deformation events during very high-rate impact loading scenarios. The dependence of the observed behaviors on the various features of the polymer stress–strain behavior are presented in detail revealing the roles of strain softening and strain hardening in governing the manner in which deformation progresses in a polymer during dynamic inhomogeneous loading events.  相似文献   

9.
In this work, entanglements in a polymer melt are modeled as a system of parallel springs which form and decay spontaneously. The springs are assumed to be nonlinear, and a certain fraction of them is torn apart by a certain strain.Based on these assumptions, a model of behavior in simple shear is developed. This model is shown to predict a behavior comprising that of a Wagner fluid, and is generalized to a tensorial model of single integral type. The integrand depends on a product of a material function, modeling reversible behavior, and a material functional which takes irreversible processes into account.Irreversibility of network disentanglement, which may occur when deformation changes or reverses direction, can be modeled in this way. It is shown that the two well-known Wagner constitutive equations with and without irreversibility assumptions are special cases of the model developed. In case of a deformation which does not change directions, the new material function and the material functional are multiplied to yield Wagner's damping function.When the rate of spring formation is a function of temperature, the developed model is shown to predict thermorheologically simple behavior. A constitutive equation for non-isothermal flow of polymers is developed with this assumption.  相似文献   

10.
11.
Under certain conditions, such as sufficiently low temperatures, high loading rates and/or highly triaxial stress states, glassy polymers display an unfavorable characteristic—brittleness. A technique used for reducing the brittleness (increasing the fracture toughness) of these materials is rubber toughening. While there is significant qualitative understanding of the mechanical behavior of rubber-toughened polymers, quantitative modeling tools for the large-strain deformation of rubber-toughened glassy polymers are largely lacking.In this paper, we develop a suite of numerical tools to investigate the mechanical behavior of rubber-toughened glassy polymers, with emphasis on rubber-toughened polycarbonate. The rubber particles are modeled as voids in view of their deformation-induced cavitation early during deformation. A three-dimensional micromechanical model of the heterogeneous microstructure is developed to study the effects of initial rubber particle (void) volume fraction on the underlying elasto-viscoplastic deformation mechanisms in the material, and how these mechanisms influence the macroscopic response of the material. A continuum-level constitutive model is developed for the large-strain elasto-viscoplastic deformation of porous glassy polymers, and it is calibrated against micromechanical modeling results for porous polycarbonate. The constitutive model can be used to study various boundary value problems involving rubber-toughened (porous) glassy polymers. As an example, the case of an axisymmetric notched bar is simulated for the case of polycarbonate with varying levels of initial porosity. The quality of the constitutive model calibration is assessed using a multi-scale modeling approach.  相似文献   

12.
A robust physically consistent three-dimensional constitutive model is developed to describe the finite mechanical response of amorphous polymers over a wide range of temperatures and strain rates, including the rubbery region and for impact loading rates. This thermomechanical model is based on an elastic–viscoplastic rheological approach, wherein the effects of temperature, strain rate, and hydrostatic pressure are accounted for. Intramolecular, as well as intermolecular, interactions under large elastic–inelastic behavior are considered for the mechanisms of deformation and hardening. For a wide range of temperatures and strain rates, our simulated results for poly(methyl methacrylate) (PMMA) and polycarbonate (PC) are in good agreement with experimental observations.  相似文献   

13.
A common usage for electroactive polymers (EAPs) is in different types of actuators, where advantage is taken of the deformation of the polymer due to an electric field. It turns out that time-dependent effects are present in these applications. One of these effects is the viscoelastic behavior of the polymer material. In view of the modeling and simulation of applications for EAP within a continuum mechanics setting, a phenomenological framework for an electro-viscoelastic material model is elaborated in this work. The different specific models are fitted to experimental data available in the literature. While the experimental data used for inherent electrostriction is restricted to small strains, a large strain setting is used for the model in order to account for possible applications where the polymers undergo large deformations, such as in pre-strained actuators.  相似文献   

14.
Shape memory polymers (SMPs) can retain a temporary shape after pre-deformation at an elevated temperature and subsequent cooling to a lower temperature. When reheated, the original shape can be recovered. Relatively little work in the literature has addressed the constitutive modeling of the unique thermomechanical coupling in SMPs. Constitutive models are critical for predicting the deformation and recovery of SMPs under a range of different constraints. In this study, the thermomechanics of shape storage and recovery of an epoxy resin is systematically investigated for small strains (within ±10%) in uniaxial tension and uniaxial compression. After initial pre-deformation at a high temperature, the strain is held constant for shape storage while the stress evolution is monitored. Three cases of heated recovery are selected: unconstrained free strain recovery, stress recovery under full constraint at the pre-deformation strain level (no low temperature unloading), and stress recovery under full constraint at a strain level fixed at a low temperature (low temperature unloading). The free strain recovery results indicate that the polymer can fully recover the original shape when reheated above its glass transition temperature (Tg). Due to the high stiffness in the glassy state (T < Tg), the evolution of the stress under strain constraint is strongly influenced by thermal expansion of the polymer. The relationship between the final recoverable stress and strain is governed by the stress–strain response of the polymer above Tg. Based on the experimental results and the molecular mechanism of shape memory, a three-dimensional small-strain internal state variable constitutive model is developed. The model quantifies the storage and release of the entropic deformation during thermomechanical processes. The fraction of the material freezing a temporary entropy state is a function of temperature, which can be determined by fitting the free strain recovery response. A free energy function for the model is formulated and thermodynamic consistency is ensured. The model can predict the stress evolution of the uniaxial experimental results. The model captures differences in the tensile and compressive recovery responses caused by thermal expansion. The model is used to explore strain and stress recovery responses under various flexible external constraints that would be encountered in applications of SMPs.  相似文献   

15.
The effects of the inelastic deformation of the matrix on the overall hysteretic behavior of a unidirectional titanium–nickel shape-memory alloy (TiNi-SMA) fiber composite and on the local pseudoelastic response of the embedded SMA fibers are studied under the isothermal loading and unloading condition. The multiaxial phase transformation of the SMA fibers is predicted using the phenomenological constitutive equations which can describe the two-step deformation due to the rhombohedral and martensitic transformations, and the inelastic behavior of the matrix material using the standard nonlinear viscoplastic model. The average behavior of the SMA composite is evaluated with the micromechanical method of cells. It is observed that the inelastic deformation of the matrix due to prior tension results in a compressive stress in the matrix after unloading of the SMA composite and this residual stress impedes the complete recovery of the pseudoelastic strain of the SMA fibers. This explains that a closed hysteresis behavior of the SMA composite is no longer observed in contrast with the case that an elastic behavior of matrix is assumed. The predicted local stress–strain behavior indicates that the cyclic response of matrix is crucial to the design of the hysteretic performance of the SMA composite under the repeated loading conditions.  相似文献   

16.
Summary A constitutive model is derived for the isothermal nonlinear viscoelastic response in polymers, which do not possess the separability property. The model is based on the concept of transient networks, and treats a polymer as a system of nonlinear elastic springs (adaptive links), which break and emerge due to micro-Brownian motion of chains. The breakage and reformation rates for adaptive links are assumed to depend on some strain energy density. The viscoelastic behavior is described by an integral constitutive equation, where the relaxation functions satisfy partial differential equations with coefficients depending on the strain history. Adjustable parameters of the model are found by fitting experimental data for a number of polymers in tension at strains up to 400 per cent. To validate the constitutive relations, we consider loading with different strain rates, determine adjustable parameters at one rate of strains, and compare prediction of the model with observations at another rate of strains. Fair agreement between experimental data and results of numerical simulation is demonstrated when the rates of strains differ by more than a decade. Received 1 July 1997; accepted for publication 7 October 1997  相似文献   

17.
In this study, strain rate sensitivity of yield behavior in a semicrystalline polymer, Nylon 101, was experimentally investigated. A precise definition of yield was established for the polymer by deforming several specimens to certain levels of strain and measuring the residual strains after unloading and strain recovery. The material was then subjected to different loading conditions (uniaxial to multiaxial) at four different quasi-static and intermediate strain rates to determine several points on the material's yield loci. Due to positive strain rate sensitivity of this polymer, the material's yield loci expanded uniformly as the strain rates were increased to higher values. Further, an empirical hydrostatic pressure dependent yield equation (with four material constants) was developed to simulate these behaviors as a function of strain rate. The capability of the developed criterion was examined by simulating high strain rate yield behavior of the material in tension and in compression. The simulation results revealed very good correlations/predictions between the experimental data and the responses determined from the proposed yield criterion.  相似文献   

18.
We present direct evidence of the macromolecular network behavior at high deformation rates based on macroscopic simulation of these systems by a group of elastics as a model of flexible-chain polymer concentrated solutions or melts. It was shown that at low deformation rates, the disentanglement process really takes place providing a possibility to irreversible deformations (flow), while at high deformation rates, the dominating effect is the formation of large inhomogeneous structures (??grains?? or ??bundles??) consisting of flocks of entangled chains. This is a model of the deformation induced flow-to-rubbery transition, which makes the irreversible flow impossible. The attempt to increase the deformation rate leads to the rupture of elastics. So, we constructed a model for the deformation-induced fluid-to-rubber transition at high rates and confirmed it by direct measurements of elastic-to-plastic strain ratio as a function of deformation rate.  相似文献   

19.
The response of a polymer (polytetrafluoroethylene) to quasi-static and dynamic loading is determined and modeled. The polytetrafluoroethylene is extremely ductile and highly nonlinear in elastic as well as plastic behaviors including elastic unloading. Constitutive model developed earlier by Khan, Huang and Liang (KHL) is extended to include the responses of polymeric materials. The strain rate hardening, creep, and relaxation behaviors of polytetrafluoroethylene were determined through extensive experimental study. Based on the observation that both viscoelastic and viscoplastic deformation of polytetrafluoroethylene are time dependent and nonlinear, a phenomenalogical viscoelasto–plastic constitutive model is presented by a series connection of a viscoelastic deformation module (represented by three elements standard solid spring dashpot model), and a viscoplastic deformation module represented by KHL model. The KHL module is affected only when the stress exceeds the initial yield stress. The comparison between the predictions from the extended model and experimental data for uniaxial static and dynamic compression, creep and relaxation demonstrate that the proposed constitutive model is able to represent the observed time dependent mechanical behavior of polytetrafluoroethylene polytetrafluoroethylene qualitatively and quantitatively.  相似文献   

20.
Complex (nonlinear) unloading behavior following plastic straining has been reported as a significant challenge to accurate springback prediction. More fundamentally, the nature of the unloading deformation has not been resolved, being variously attributed to nonlinear/reduced modulus elasticity or to inelastic/“microplastic” effects. Unloading-and-reloading experiments following tensile deformation showed that a special component of strain, deemed here “Quasi-Plastic-Elastic” (“QPE”) strain, has four characteristics. (1) It is recoverable, like elastic deformation. (2) It dissipates work, like plastic deformation. (3) It is rate-independent, in the strain rate range 10−4-10−2/s, contrary to some models of anelasticity to which the unloading modulus effect has been attributed. (4) To first order, the evolution of plastic properties occurs during QPE deformation. These characteristics are as expected for a mechanism of dislocation pile-up and relaxation. A consistent, general, continuum constitutive model was derived incorporating elastic, plastic, and QPE deformation. Using some aspects of two-yield-function approaches with unique modifications to incorporate QPE, the model was implemented in a finite element program with parameters determined for dual-phase steel and applied to draw-bend springback. Significant differences were found compared with standard simulations or ones incorporating modulus reduction. The proposed constitutive approach can be used with a variety of elastic and plastic models to treat the nonlinear unloading and reloading of metals consistently for general three-dimensional problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号