首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文中提出单轴双向加载分离式霍普金森压杆(bidirectional-load split Hopkinson compression bar,BSHCB),即在传统的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)的基础上增加另一个对称的入射波,两边的入射波同时且对称地对试样进行动态加载。根据一维应力波传播理论,推导出单轴双向加载分离式霍普金森杆的数据处理公式。通过数值模拟分析发现,所推导的数据处理公式可以用于计算单轴双向加载实验中试样的工程应力、工程应变和工程应变率。此外,单轴双向对称加载不仅可缩短试样内部应力均匀化的过程,而且可以提高试样应变率。  相似文献   

2.
利用传统分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验技术来实现试件在较低应变率下的大变形时,需要使用超长的压杆系统,杆件的加工和实验空间限制了该技术的推广应用。鉴于此,提出一种直撞式霍普金森压杆二次加载实验技术,利用透射杆中的应力波在其末端的准刚性壁反射实现对试件的二次加载,并分析了准刚性质量块尺寸对二次加载的影响规律;采用二点波分离方法对叠加的应力波进行了有效分离和计算,在总长4 m的压杆系统中实现了1.2 ms的长历时加载,并可以准确获得试件的加载应变率曲线和应力应变关系。建立了直撞式霍普金森压杆二次加载有限元模型,数值仿真结果表明,该实验技术能有效地实现试件的二次加载,与超长SHPB系统获得的仿真结果相比较,两者的试件应力应变关系完全一致。利用该技术对1100铝合金材料进行动态压缩实验,实现了其在102 s?1量级应变率下的大变形动态力学性能测试。  相似文献   

3.
SHPB数据处理中的二波法与三波法   总被引:15,自引:1,他引:14  
宋力  胡时胜 《爆炸与冲击》2005,25(4):368-373
分析了传统的分离式霍普金森压杆测试数据处理方法(二波法)及其他被提出的改进方法的误差及优缺点,给出了传统二波处理方法在不同被测材料情况下所带来的误差。分析结果表明,基于绝对时间下的试件应力及应变计算的三波处理法具有最好的可信度且能最大程度地避免数据处理过程中的人为因素。传统二波法在不同测试情况下均不是优选的方法。对于三波测试无法进行的情况,也提出了一种简化三波处理方法。  相似文献   

4.
SHPB测试中的均匀性问题及恒应变率   总被引:11,自引:3,他引:8  
宋力  胡时胜 《爆炸与冲击》2005,25(3):207-216
利用一维应力波理论对霍普金森压杆(SHPB)测试中的均匀性问题作了较为详尽的讨论,对测试中各种加载波形的优缺点及各参数对均匀性的影响进行了分析与评估。给出了测试脆性材料时实现恒应变率加载的加载条件。对在满足应力均匀性要求下SHPB的可测应变率范围作了讨论并修正了前人不完善的结论。讨论了考虑均匀性时应采用的测试数据处理方法。利用图解的方法对弹塑性材料测试时的均匀性问题及相应加载要求作了定性分析,指出对弹塑性材料,测试中的应变不均匀也应予以考虑。  相似文献   

5.
粘弹性Hopkinson压杆中波的衰减和弥散   总被引:11,自引:0,他引:11  
研究了线性粘弹性Hopkinson压杆中由于粘性效应和横向惯性效应引起的就力波衰减和弥散。导出计及横向惯性效应的线性粘弹性杆中纵波控制方程和应力解应变解,进而导出表征波衰竭和弥散性质的纵波传播系数的修正公式。这一修正公式计入粘性效应和几何效应,与Bacon公式相比,其形式简单,更便于在实验数据处理中应用。最后利用实验方法测定了有机玻璃杆的传播系数。  相似文献   

6.
介绍了SHPB实验中的波分离技术基本原理,该方法利用两相距很近应变计测量信号分离重叠的入射波和反射波。由于两应变计的距离很近,在弹性杆可以忽略应力波传播的弥散。由于应变计的位置可以非常接近试样,减少了实验中因应力波弥散产生的误差。利用该方法对混凝土进行了冲击压缩实验研究,得到了混凝土的动态应力-应变关系。讨论了测量误差导致波分离技术的误差。  相似文献   

7.
SHPB实验中的端面凹陷修正   总被引:1,自引:0,他引:1  
宋力  胡时胜 《爆炸与冲击》2010,30(2):203-208
提出了一种关于霍普金森压杆(SHPB)实验中压杆端面凹陷的分析方法,并在此基础上提出了修 正该凹陷的数据处理技术。将该技术与其他数据处理技术相结合,可提高SHPB实验中应变的计算精度。 该技术使SHPB可以用于小应变范围测试,并使利用SHPB测得完整的、精度及可靠性可与准静态测试相当 的材料动态应力应变曲线成为可能。  相似文献   

8.
大直径SHPB装置的数值模拟及实验误差分析   总被引:4,自引:1,他引:4  
介绍了用于混凝土冲击试验的Φ100SHPB装置。利用数值模拟和应变测试相结合的方法讨论了应力波在该装置中的传播特性。二维效应导致应力波在大直径SHPB装置传播过程的弥散现象。同时在实验的大部分时间内大尺寸试样的应力(应变)存在不均匀性。因此大直径SHPB装置进行混凝土冲击压缩应力-应变曲线的实验研究会产生误差。利用数值模拟分析了误差影响程度,同时验证了用混凝土试样应变和透射杆应力得到应力-应变曲线初始段的可行性。  相似文献   

9.
用经典Hopkinson杆测试弹性模量的初步探讨   总被引:1,自引:0,他引:1  
采用一维弹性应力波理论,实现了经典Hopkinson杆试验的计算机模拟,研究了试验"测得"(重构)的应力-应变曲线的精确度,并结合具体试验进行了分析.由于经典Hopkinson杆试验的基本计算公式中引入了"应力均匀性"假设,因此在有限应变范围内,重构的应力-应变曲线总是和输入(真实)曲线差异较大.结果表明,采用经典Hopkinson杆测量的弹性模量是不可靠的,因此实践中应慎用.  相似文献   

10.
对分离式霍普金森压杆(split Hopkinson pressure bar, SHPB) 实验中试件的黏弹性波传播的控制方程组进行Laplace 变换,并结合恰当的初始-边界条件求解,得到变换域的应力、速度、应变等变量的像函数的精确表达式. 采用该方法处理SHPB 实验中涉及黏弹性试件内部应力非均匀性问题,并给出数值反变换解. 作为特例,对于弹性试件分别采用级数展开法和留数定理进行反Laplace 变换,从而给出弹性夹层介质中应力波传播问题的解析解.   相似文献   

11.
电磁霍普金森(E-Hopkinson)杆实验技术是利用电磁驱动的方式替代了传统霍普金森杆中子弹撞击加载杆来产生应力波, 是电磁驱动技术与霍普金森杆实验技术相结合而发展起来的一种新的动态加载技术. 本文综述了E-Hopkinson杆实验技术在单轴单向/双向及动态双轴对称压缩/拉伸、复合材料的层间断裂、金属动态包辛格效应等领域的应用现状, 涵盖了实验研究, 理论分析及数值模拟等, 最后对该实验技术未来发展方向进行了展望.   相似文献   

12.
提出了一种新的基于Hopkinson杆实验技术的在102~103s-1高应变率下实现压剪复合加载的实验装置,并给出了相应的理论分析和数值模拟。为了获取材料在复杂应力下的本构关系,借助斜飞片冲击实验的思想,对Hopkinson杆进行改造,将入射杆的末端改进为截锥形,以便在试样中同时产生压缩和剪切应力。利用有限元分析软件LS-DYNA对试样中的应力波传播进行模拟计算,并利用改进装置进行了初步实验。计算和分析结果表明,利用所设计的装置可以实现对试样的动态压剪复合加载,获得材料在高应变率复杂应力加载下的本构响应,进而建立材料在复杂应力状态下本构行为的描述。  相似文献   

13.
弹性直杆动态屈曲与后屈曲的实验研究   总被引:7,自引:0,他引:7  
对传统的霍普金森压杆装置(SHPB)进行改进,用于研究弹性直杆的动态屈曲与后屈曲,并且分析了影响实验精度的因素。实验结果表明,在轴向应力波作用下弹性直杆的动态屈曲临界载荷明显高于静态的,并且在屈曲发生后,在直杆中有弯曲波产生,其波速大约为弹性剪切波的波速。  相似文献   

14.
对分离式霍普金森压杆(split Hopkinson pressure bar, SHPB) 实验中试件的黏弹性波传播的控制方程组进行Laplace 变换,并结合恰当的初始-边界条件求解,得到变换域的应力、速度、应变等变量的像函数的精确表达式. 采用该方法处理SHPB 实验中涉及黏弹性试件内部应力非均匀性问题,并给出数值反变换解. 作为特例,对于弹性试件分别采用级数展开法和留数定理进行反Laplace 变换,从而给出弹性夹层介质中应力波传播问题的解析解.  相似文献   

15.
一种用于材料高应变率剪切性能测试的新型加载技术   总被引:4,自引:0,他引:4  
高应变率下的冲击剪切实验技术是材料动态力学行为及其微观机理研究的重要基础.采用分离式霍普金森压杆(split Hopkinson pressure bar)装置一般可以获得材料在104s-1以内应变率的动态力学性能.在超过104s-1的应变率下对材料进行冲击剪切测试时,通常需要采用高速压剪飞片技术或由气炮发射子弹对试样进行直接加载.本文提出一种可用于传统霍普金森压杆技术的新型双剪切试样,可以在103~105s-1剪应变率范围实现对材料剪切性能的精确测量;同时,可以对材料的变形及失效过程进行直接观测.试样与压杆之间避免了复杂的界面或连接装置,通过转接头可以保证试样与压杆直接接触,提高测试精度,同时可以防止因试样的横向位移而导致的非均匀变形.获得了紫铜在1400~75000s-1应变率下的剪应力-剪应变曲线,并采用计算软件"ABAQUS/Explicit"对双剪切试样的动态加载过程进行了数值模拟和结果验证.分析表明,剪切区的主要区域内剪切成分占主导地位,其应力应变场沿厚度及宽度方向基本呈均匀分布.实验得到的剪应力-剪应变曲线与模拟结果吻合较好,说明所提出的基于分离式霍普金森压杆系统的双剪切试样可以为材料的高应变率力学性能测试提供一种方便有效的加载技术.   相似文献   

16.
大直径SHPB弥散效应的二维数值分析   总被引:18,自引:2,他引:18  
刘孝敏  胡时胜 《实验力学》2000,15(4):371-376
采用轴对称动态有限元HONDO程序对大直径SHPB装置中压杆横向泊松效应引起的应力波弥散进行二维数值分析,并从以下三个方面讨论波形弥散的影响:(1)SHPB装置中压杆直径和杆长对弥散结果(主要是升时)的影响;(2)压杆中的波形弥散对试件应力-应变曲线的影响;(3)弥散对试件应变率的影响。分析表明,在直径SHPB弥散效应对实验结果的影响很大,必须考虑。  相似文献   

17.
对混凝土类材料动态压缩应变率效应研究的发展及问题进行了概述,对比不同应力状态下混凝土类材料动态压缩应变率效应的表现特征,揭示了不同加载路径下实测动态强度提高系数的显著差异。研究表明,在高应变率下,基于初始一维应力加载路径的试件将因横向惯性效应导致的侧向围压而演化至多维应力状态,传统霍普金森杆技术无法获得高应变率下基于真实一维应力路径的动态强度提高系数,在强度模型中直接应用实测数据将过高估计材料的动态强度。鉴于应变率效应的加载路径依赖性,将仅包含应变率的强度提高系数模型扩展至同时计及应变率和应力状态的多维应力状态模型,并结合Drucker-Prager准则在强度模型中给予了实现。针对具有自由和约束边界试件开展的数值霍普金森杆实验表明,多维应力状态下的应变率效应模型可以考虑应变率效应随应力状态改变的特点,从而准确预测该类材料的动态压缩强度。研究结果可为正确应用霍普金森杆技术确定脆性材料的动态压缩强度提供参考。  相似文献   

18.
建立描述SHPB实验中线性粘弹性试件内部应力波传播的控制方程组,根据试件两端与入射杆及透射杆接触的应力波特征关系给出耦合边界条件.对方程组和定解条件进行Laplace变换,求得试件内部应力在变换域像函数的表达式.采用数值反变换技术进行反Laplace变换,获得试件两端的应力时程曲线.对现有的固定Tal-bot反变换算法进行改进:将入射波像函数分解为基本部分和延迟部分,利用固定Talbot算法对基本部分入射波作用下的波动问题求解,其他部分的解通过延迟定理得到,最终解为两部分的叠加.采用这种改进算法得到的不同入射波下粘弹性试件的内部应力解与传统的基于特征线数值模拟方法的结果吻合.在此基础上探讨了粘弹性试件的几何参数和材料本构参数对透射波波形的影响.  相似文献   

19.
材料动力学试验技术远比准静态力学中的复杂,为了模拟各种速率的冲击加载过程,试验装置设计就成为关键问题之一.特别是针对材料动态拉伸性能的测试,目前的冲击拉伸装置还没有统一标准,因此本文基于一维弹性应力波原理设计了一套双气室间接杆-杆型冲击拉伸试验装置.该装置采用了双气室对称布置的方式,通过气体转换器实现气路的转换,克服了现有气动式冲击拉伸设备结构复杂、密封要求严格的缺点.本文利用该装置对2A12T4铝合金试件的冲击拉伸性能进行了测试,并数值分析了应力波在杆系和试件中的传播效应.通过试验测试和数值分析论证了该冲击拉伸装置实验的可靠性和设计的合理性.  相似文献   

20.
采用大直径分离式霍普金森压杆系统获得的不同尺寸试样的实验冲击动态力学参数有差异,因此在直径100 mm压杆上进行了3种直径(50、75和100 mm)和5种长径比(0.4、0.5、0.6、0.8和1.0)的砂岩试样冲击试验,分析了不同尺寸试样应力-应变曲线和应变率曲线随尺寸的变化,提出了用于比较波形对齐重合度的波形叠加系数,并与应力平衡因子共同构建了动态应力平衡性研究体系,由此确定大直径霍普金森压杆试验的试样建议尺寸。同时,利用高速摄影机监测试样的动态破坏状况。结果表明:当长径比相同时,直径75与100 mm岩石试样的动态抗压强度测试值相近,直径50 mm试样具有更明显的长度效应;随着试样直径的增大,应变率曲线从单峰变为双峰;小尺寸试样更易发生轴向劈裂破坏,大尺寸试样受内部应力波叠加影响产生了较大的拉应力,易发生层裂拉伸和轴向劈裂的复合型破坏;对直径75 mm且长径比0.3~0.4的试样,波形对齐后重合度较高,在起始破坏前拥有充足的应力平衡时间,应变率加载效果较好。获得了砂岩试样冲击压缩试验的尺寸效应,可为大直径岩石试样的尺寸选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号