首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digital image correlation (DIC) of images obtained using scanning electron microscopy has been used to study, quantitatively, the plastic deformation of stainless steel at the microstructural scale. An artificial speckle pattern was generated by the remodelling of a deposited gold layer. A new experimental setup was shown to accelerate the remodelling process and promote the formation of finer nano-scale speckles with sizes ranging 30 nm to 150 nm and of similar spacing. The effects of surface preparation on speckle morphology are discussed. The high density of speckles enabled displacement mapping with resolution of one displacement vector each 0.2?×?0.2 μm2 of surface area. It is shown that sub-micron resolution is necessary to capture the plastic deformation associated with the formation of slip bands in stainless steel, which are an important component of the deformation of these materials at the microscale. Electron backscatter diffraction (EBSD) was used to reconstruct the surface grain boundaries and enabled these deformation features to be linked to the microstructure.  相似文献   

2.
As a carrier of deformation information, the speckle pattern, or more exactly the random intensity distributions, which could be naturally occurred or artificially fabricated onto test samples’ surface, plays an indispensable role in digital image correlation (DIC). It is now well recognized that the accuracy and precision in DIC measurements not only rely on correlation algorithms, but also depend highly on the quality of the speckle pattern. Considering the huge diversity in test materials, spatial scales and experimental conditions, speckle pattern fabrication could be a challenging issue facing DIC practitioners. To obtain good speckle patterns suitable for DIC measurements, some key issues of fabrication methods and quality assessment of speckle patterns must be well addressed. To this end, this review systematically presents the speckle pattern classification and fabrication techniques for various samples and scales, as well as some typical quality assessment metrics.  相似文献   

3.
Naylor  R.  Hild  F.  Fagiano  C.  Hirsekorn  M.  Renollet  Y.  Tranquart  B.  Baranger  E. 《Experimental Mechanics》2019,59(8):1159-1170

In situ tensile tests in a scanning electron microscope (SEM) have been conducted on a 8-layer 5-harness satin carbon fibre and epoxy matrix composite to observe the first stages of damage at the scale of fibres and matrix. A speckle pattern based on a suspension of alumina particles was applied onto the surface of the specimen to facilitate the use of digital image correlation (DIC). Local and finite element (FE) DIC are compared on pictures acquired during the tensile tests, with and without a speckle pattern. FE DIC with mechanical regularization was found to be the only approach able to measure displacement fields at a fine enough resolution in both cases. This method, initially created for homogeneous materials, was then adapted to heterogeneous materials. First, a microstructure consistent mesh was created and used for correlation purposes. Second, the difference between the mechanical properties of the constituents is taken into account in the mechanical regularization. Last, the accuracy of the method is analysed. The adaptation presented herein was proved to be able to measure displacement fields in the matrix between fibres with an error of 10 nm (a fifth of a pixel) and to detect the initiation of the first damage mechanisms by means of the mechanical residuals.

  相似文献   

4.
Background:

Digital Image Correlation (DIC) is based on the matching, between reference and deformed state images, of features contained in patterns that are deposited on test sample surfaces. These features are often suitable for a single scale, and there is a current lack of multiscale patterns capable of providing reliable displacement measurements over a wide range of scales.

Objective:

Here, we aim to demonstrate that a pattern based on a fractal (self-affine) surface would make a suitable pattern for multiscale DIC.

Methods:

A method to numerically generate patterns directly from a desired auto-correlation function is introduced. It is then enhanced by a Mean Intensity Gradient (MIG) improvement process based on grey level redistribution. Numerical experiments at multiple scales are performed for two different imposed displacement fields and results for one of the patterns generated are compared with those obtained for a random pattern and a Perlin noise one.

Results:

The proposed pattern is shown to lead to DIC errors comparable to those found with the two others for the first scales, but has much greater robustness. More importantly, the pattern generated here exhibits stable errors and robustness with respect to the scale whereas these two outputs become significantly degraded for the other two patterns as the scale increases.

Conclusions:

As a result, scale invariance properties of the pattern based on fractal surfaces correspond to scale invariance in DIC errors as well. This is of great interest regarding the use of such patterns in multiscale DIC.

  相似文献   

5.
6.
A new experimental method has been developed for studying deformations of micromechanical material systems at the submicron scale. To that end, a special digital scanning tunneling microscope (STM) was designed to be coupled to a mechanically deforming specimen. Operating in constant current mode, this digitally controlled STM records detailed topographies of specimen surfaces with a resolution of 10 nm in-plane and 7 nm out-of-plane over a 10 μ × 10 μ area. Three-dimensional displacement field information is extracted by comparing topographies of the same specimen area before and after deformation by way of a modified digital image correlation algorithm. The resolution of this (combined) displacement measuring method was assessed on translation and uniaxial tensile tests to be 5 nm for in-plane displacement components and 1.5 nm for out-of-plane motion over the same area. This is the first paper in a series of three in which the authors delineate the main features of this specially designed microscope and describe how it is constituted, calibrated and used with the improved version of the digital image correlation method to determine deformations in a test specimen at the nanoscale.  相似文献   

7.
Yu  L.  Pan  B. 《Experimental Mechanics》2021,61(7):1121-1142
Background

Developments in digital image correlation (DIC) in the last decade have made it a practical and effective optical technique for displacement and strain measurement at high temperatures.

Objective

This overview aims to review the research progress, summarize the experience and provide valuable references for the high-temperature deformation measurement using DIC.

Methods

We comprehensively summarize challenges and recent advances in high-temperature DIC techniques.

Results

Fundamental principles of high-temperature DIC and various approaches to generate thermal environment or apply thermal loading are briefly introduced first. Then, the three primary challenges presented in performing high-temperature DIC measurements, i.e., 1). image saturation caused by intensified thermal radiation of heated sample and surrounding heating elements, 2) image contrast reduction due to surface oxidation of the heated sample and speckle pattern debonding, and 3) image distortion due to heat haze between the sample and the heating source, and corresponding countermeasures (i.e., the suppression of thermal radiation, fabrication of high-temperature speckle pattern and mitigation of heat haze) are discussed in detail. Next, typical applications of high-temperature DIC at various spatial scales are briefly described. Finally, remaining unsolved problems and future goals in high-temperature deformation measurements using DIC are also provided. 

Conclusions

We expect this review can guide to build a suitable DIC system for kinematic field measurements at high temperatures and solve the challenging problems that may be encountered during real tests.

  相似文献   

8.
Damage during loading of polycrystalline metallic alloys is localized at or below the scale of individual grains. Quantitative assessment of the heterogeneous strain fields at the grain scale is necessary to understand the relationship between microstructure and elastic and plastic deformation. In the present study, digital image correlation (DIC) is used to measure the strains at the sub-grain level in a polycrystalline nickel-base superalloy where plasticity is localized into physical slip bands. Parameters to minimize noise given a set speckle pattern (introduced by chemical etching) when performing DIC in a scanning electron microscope (SEM) were adapted for measurements in both plastic and elastic regimes. A methodology for the optimization of the SEM and DIC parameters necessary for the minimization of the variability in strain measurements at high spatial resolutions is presented. The implications for detecting the early stages of damage development are discussed.  相似文献   

9.
In many applications of digital image correlation (DIC), it is advantageous to have measurements at multiple scales. Because it is rare to have natural features that can be used for DIC at multiple magnifications, an appropriately multiscale DIC pattern is needed. This work develops a multiscale DIC pattern that (1) contains features appropriate for both high and low magnification, (2) does not need to know the location of high magnification a priori, and (3) does not require specialized DIC equipment beyond what is necessary to achieve the two magnifications. The pattern is developed based on an optimization framework that minimizes expected DIC error while constraining sub-regions of the pattern to biased average grayscale values. The inclusion of local grayscale biases in the pattern has the effect of introducing resolvable features at a length scale much larger than the speckles of which the pattern is composed. Numerical and physical experiments were performed to illustrate the functionality and utility of the designed patterns. Notable among the findings is the trade off between DIC accuracy at the two scales and how it is controlled by grayscale bias.  相似文献   

10.
This paper details the creation of experimental and computational frameworks to capture high-resolution, microscale deformation mechanisms and their relation to microstructure over large (mm-scale) fields of view. Scanning electron microscopy with custom automation and external beam control was used to capture 209 low-distortion micrographs of 360 μm?×?360 μm each, that were individually correlated using digital image correlation to obtain displacement/strain fields with a spatial resolution of 0.44 μm. Displacement and strain fields, as well as secondary electron images, were subsequently stitched to create a 5.7 mm × 3.4 mm field of view containing 100 million (7678?×?13,004) data points. This approach was demonstrated on Mg WE43 under uniaxial compression, where effective strain was shown to be relatively constant with respect to distance from the grain boundary, and a noticeable increase in the effective strain was found with an increase in the basal Schmid factor. The ability to obtain high-resolution deformations over statistically relevant fields of view enables large data analytics to examine interactions between microstructure, microscale strain localizations, and macroscopic properties.  相似文献   

11.
Synchronous multi-scale observations on rock damage and rupture   总被引:2,自引:1,他引:1  
This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.  相似文献   

12.
数字图像相关方法中散斑图的质量评价研究   总被引:4,自引:0,他引:4  
潘兵  吴大方  夏勇 《实验力学》2010,25(2):120-129
在利用数字图像相关方法测量物体表面变形时,被测物体表面必需覆盖有灰度随机分布的散斑场,该散斑场作为试件表面变形信息的载体随试件一起变形。在实际情况下,不同的散斑场会显示出完全不同的灰度分布特征,并对数字图像相关方法的测量结果有着重要影响。因此如何定量评价散斑图的优劣是数字图像相关方法中一个重要的基本问题,也是该方法的使用者非常关心的问题。基于最近数字图像相关方法基本理论研究的进展,本文提出平均灰度梯度这一新参数用于散斑图质量的评价。为证实该参数的有效性,本文对五幅明显不同的散斑图进行了精确平移,并将数字图像相关方法测量的位移与预加的平移量进行比较,分析了位移测量结果的均值误差和标准差。结果显示位移测量结果的均值误差和标准差均与散斑图的平均灰度梯度有关,一个好的散斑图应该具有较大的平均灰度梯度。  相似文献   

13.
An apparatus has been designed and implemented to measure the elastic tensile properties (Young's modulus and tensile strength) of surface micromachined polysilicon specimens. The tensile specimens are “dog-bone” shaped ending in a large “paddle” for convenient electrostatic or, in the improved apparatus, ultraviolet (UV) light curable adhesive gripping deposited with electrostatically controlled manipulation. The typical test section of the specimens is 400 μm long with 2 μm×50 μm cross section. The new device supports a nanomechanics method developed in our laboratory to acquire surface topologies of deforming specimens by means of Atomic Force Microscopy (AFM) to determine (fields of) strains via Digital Image Correlation (DIC). With this tool, high strength or non-linearly behaving materials can be tested under different environmental conditions by measuring the strains directly on the surface of the film with nanometer resolution.  相似文献   

14.
A stereomicroscopic particle image velocimetry (SμPIV) system has been developed for millimeter scale flows. The SμPIV system is based on an off-the-shelf stereomicroscope, with magnification between 0.69× and 30×, and a field of view between 7.5 × 6 mm and 250 × 200 μm. Custom calibration targets were devised using printed circuit board technology, and applied at a magnification factor of 1.74, with a field of view of 4.75 × 3.8 mm. Measurement errors were assessed by moving a test block with fixed particles. Total system uncertainty in test block displacement transverse to the optical axis was 0.5% of the field of view, and 3% of the depth of field for motion along the optical axis. Approximately 20% of this uncertainty was due to the calibration target quality and test block procedures.  相似文献   

15.
A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation.The model is inspired by the distribution of the measured in-plane and out-of-plane deformation.The inplane displacement of crack-tip fields under both Mode I and mixed-mode(Mode I-II) fracture conditions is measured by using the digital Moire’ method.The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes.The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.  相似文献   

16.
17.
Mathew  M.  Wisner  B.  Ridwan  S.  McCarthy  M.  Bartoli  I.  Kontsos  A. 《Experimental Mechanics》2020,60(8):1103-1117
Background

Digital Image Correlation (DIC) is a length scale independent surface pattern matching and tracking algorithm capable of providing full field deformation measurements. The confident registration of this pattern within the imaging system becomes key to the derived results. Practically, conventional speckling methods use non-reliable, non-repeatable patterning methodologies including spray paints and air brushing leading to increased systematic and random errors based on the user’s experience.

Objective

A methodology to develop a speckle pattern tailored to the imaging and experimental conditions of the given system is developed in this paper.

Methods

In this context, a novel bio-inspired speckle pattern development technique is introduced, leveraging spatial imaging parameters in addition to frequency characteristics of speckle patterns, enhancing the results obtained through DIC. This novel technique leverages gradient parameters in the frequency spectrum obtained from patterns fabricated using a bio-templating manufacturing technique.

Results

The analysis presented shows that optimized gradient features alongside tailored spatial characteristics reduce errors while increasing the usefulness of DIC results across the entire region of interest. With this new approach, gradient information is derived from the bio-templated pattern, extracted, optimized and then convolved with spatial properties of a numerically generated 2D point clouds which can then be transferred onto actual specimens. Numerical error analysis shows that the optimized patterns result in significant reduction in root mean square error compared to conventional speckling methods.

Conclusions

Physical experiments show the scalability of this optimized pattern to allow for varying working distances while consistently maintaining a lower error threshold compared to conventional speckling techniques.

  相似文献   

18.
Digital image correlation (DIC) has become a widely utilized non-contact, full-field displacement measurement technique for obtaining accurate material kinematics. Despite the significant advances made to date, high resolution reconstruction of finite deformations for images with intrinsically low quality speckle patterns or poor signal-to-noise content has not been fully addressed. In particular, large image distortions imposed by materials undergoing finite deformations create significant challenges for most classical DIC approaches. To address this issue, this paper describes a new open source DIC algorithm (qDIC) that incorporates cross-correlation quality factors (q-factors), which are specifically designed to assess the quality of the reconstructed displacement estimate during the motion reconstruction process. A q-factor provides a robust assessment of the uniqueness and sharpness of the cross-correlation peak, and thus a quantitative estimate of the subset-based displacement measure per given image subset and level of applied deformation. We show that the incorporation of energy- and entropy-based q-factor metrics leads to substantially improved displacement predictions, lower noise floor, and reduced decorrelation even at significant levels of image distortion or poor speckle quality. Furthermore, we show that q-factors can be utilized as a quantitative metric for constructing a hybrid incremental-cumulative displacement correlation scheme for accurately resolving very large homogeneous and inhomogeneous deformations, even in the presence of significant image data loss.  相似文献   

19.
PIV measurements of a microchannel flow   总被引:24,自引:0,他引:24  
 A particle image velocimetry (PIV) system has been developed to measure velocity fields with order 1-μm spatial resolution. The technique uses 200 nm diameter flow-tracing particles, a pulsed Nd:YAG laser, an inverted epi-fluorescent microscope, and a cooled interline-transfer CCD camera to record high-resolution particle-image fields. The spatial resolution of the PIV technique is limited primarily by the diffraction-limited resolution of the recording optics. The accuracy of the PIV system was demonstrated by measuring the known flow field in a 30 μm×300 μm (nominal dimension) microchannel. The resulting velocity fields have a spatial resolution, defined by the size of the first window of the interrogation spot and out of plane resolution of 13.6 μm× 0.9 μm×1.8 μm, in the streamwise, wall-normal, and out of plane directions, respectively. By overlapping the interrogation spots by 50% to satisfy the Nyquist sampling criterion, a velocity-vector spacing of 450 nm in the wall-normal direction is achieved. These measurements are accurate to within 2% full-scale resolution, and are the highest spatially resolved PIV measurements published to date. Received: 29 October 1998/Accepted: 10 March 1999  相似文献   

20.
Digital Image Correlation (DIC) provides a full-field non-contact optical method for accurate deformation measurement of materials, devices and structures. The measurement of three-dimensional (3D) deformation using DIC in general requires imaging with two cameras and a 3D-DIC code. In the present work, a new experimental technique, namely, Diffraction Assisted Image Correlation (DAIC) for 3D displacement measurement using a single camera and 2D-DIC algorithm is presented. A transmission diffraction grating is placed between the specimen and the camera, resulting in multiple images which are then used to obtain apparent in-plane displacements using 2D-DIC. The true in-plane and out-of-plane displacements of the specimen are obtained from the apparent in-plane displacements and the diffraction angle of the grating. The validity and accuracy of the DAIC method are demonstrated through 3D displacement measurement of a small thin membrane. This technique provides new avenues for performing 3D deformation measurements at small length scales and/or dynamic loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号