首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
高分子材料注塑固化阶段的残余应力分析   总被引:3,自引:0,他引:3  
徐千军  余寿文 《力学学报》1998,30(2):157-167
在结晶性高分子材料注塑过程的固化阶段,温度分布、材料细观结构和应力应变之间相互耦合,因而其变化规律非常复杂.本文在井上等人考虑材料细观结构变化的金属热加工工艺应力分析[3~6]的基础上,发展了一套用于高分子注塑固化阶段残余应力分析的本构描述和有限元分析方法.在本构模型中,同时考虑了温度变化、结晶和“冻结取向”对变形的贡献.  相似文献   

2.
在弹性接触问题有限元混合法的基础上,把材料非线性和表面非线性两种迭代过程耦合,在瞬态温度场分析中将伽辽金法和向后差分法结合,并用混合法进行热接触迭代,把瞬态温度场分析和弹塑性接触分析耦合。提出了一种瞬态耦合热弹塑性接触有限元分析方法,并已成功地用于核容器的密封分析。  相似文献   

3.
基于一种特殊有限元特征分析方法获得两相材料界面端奇异性应力和位移场数值特征解, 据此开发了一种新型超级单元模型, 用于分析热载荷作用下两相材料界面端的应力场. 与机械载荷作用下超级单元模型的区别在于, 该模型在能量泛函中考虑了热-机耦合的影响, 将应力场分为奇异项和非奇异项, 而奇异性项又可分解为热致部分和力致部分. 模型的有效性通过了经验解和传统有限元方法的验证;模型可以避免在界面端邻域网格高度加密, 提高了计算速度, 对于分析多奇异性点应力干涉问题有重要意义.  相似文献   

4.
计及材料特性与温度的相关性,基于Lord和Shulman(L-S)广义热弹性理论,建立了此类问题的有限元控制方程. 由于材料属性的温度相关性,温度控制方程具有非线性,积分变换求解方法难以采用,因而将有限元方程直接在时间域求解. 利用所建立方法研究了材料特性与温度相关、带有孔洞的无限大体在热冲击和机械冲击作用下的广义热弹性问题. 分析表明,在时间域直接求解材料属性与温度相关的广义热弹性问题是可行的,所得结果具有很高的精度,热的波动性得到充分的展现. 同时发现,热冲击载荷作用时,材料属性与温度的相关性对结构的机械响应影响显著,对温度响应影响很小;机械载荷作用时,材料参数与温度的相关性对所有响应影响都很小. 因此,研究热冲击载荷作用的机械响应时,必须考虑材料属性的温度相关性,而研究温度响应时,无论何种冲击载荷,都可以不考虑材料属性的温度相关性.   相似文献   

5.
不同模量弹性问题理论及有限元法研究进展   总被引:12,自引:1,他引:12  
随着科学技术的日益发展,对材料力学性质的研究提出了更高的要求,研制新型的材料以及挖掘材料自身特性的潜力,已成为新的研究动向.简述了不同模量弹性问题理论及其有限元法的研究与发展.利用等效的概念,对Ambartsumyan有限元计算模型、Jones有限元计算模型、张允真等有限元计算模型、叶志明等计算模型进行改进和探讨.通过不同模量弹性理论及其有限元方法在实际工程构件问题分析中的应用表明,若沿用相同模量弹性理论或有限元对有关问题进行计算,其结果将与采用不同模量模型材料所得的刚度和强度有较大的偏差。  相似文献   

6.
高密度封装结构中存在大量焊球,在进行有限元建模时,考虑到焊球数量多且尺寸小的特点,需简化焊球层模型.本文针对高密度封装结构中倒装焊及底填胶,提出了一种新的简化模型,采用非重点部位简化和材料均匀化相结合的方法,将内部焊球层和底填胶简化为均匀层,只保留外圈几层焊球.通过建立代表性体积单元,计算得到均匀化层的材料参数.讨论了外层焊球圈数对焊球层危险点应力的影响,发现保留外圈两层焊球就能得到非常精确的结果.利用新简化模型计算了高密度封装结构的疲劳寿命,所获得的结果与未均匀化模型结果误差在0.3%以内.  相似文献   

7.
利用有限元软件COMSOLMultiphysics,考虑了温度和孔隙率敏感的电磁学、热力学和力学的材料性质,基于烧结的连续介质力学建立了耦合电磁-热-力的多物理场、单模微波腔内烧结陶瓷材料的三维模型,实现了整个微波烧结过程的数值模拟,并与实验数据进行了对比,验证了有限元模型的合理性。通过该模拟研究了在烧结过程中材料内的电场、温度和致密化的分布和变化。结果表明,在高介电损耗材料基座作用下,低损耗材料迅速升温,来自微波的电能转换成热量,并观察到显著的介电耦合现象。微波烧结陶瓷材料的结果显示出了加热行为对电磁场分布、材料的介电性能、热力学性能和温度分布的复杂依赖性。试样剖面的温度和温度梯度演变图显示出微波烧结过程中不规则的温度分布情况。这种不均匀性主要是由粉体材料不均匀的电特性和电场分布决定的。本文建立的COV(变异系数)误差图显示出粉体材料微波烧结过程中随温度增加而产生的热异质性。  相似文献   

8.
将基于应变软化玻璃状高分子材料微观特征建立的BPA8-链分子网络模型引入UpdatingLagrange有限元方法,建立了适于变形局部化分析的大变形弹塑性有限元驱动应力法.在此基础上,数值模拟了初始各向同性高分子材料平面应变拉伸变形局部化的传播过程.探讨了BPA模型对具有加工硬化特性的结晶性高分子材料变形分析的适应性;分析了局部化传播过程中颈缩截面的非均匀应力三轴效应;最后,讨论了网格尺寸以及初始几何不均匀性对颈缩扩散以及应力三轴效应的影响  相似文献   

9.
针对高超声速飞行器飞行时气动加热严重的问题,为了保证高升阻比外形,提出疏导式热防护结构,建立了一套内置高导C/C材料的疏导式热防护结构原理模型,通过数值模拟和电弧风洞的方法对疏导式热防护结构进行了分析,得到内置高导C/C材料的防热效果.数值模拟结果表明来流马赫数为8时,模型驻点温度下降了500度,柱面最低升高了380度,实现了热流从高温区到低温区的疏导,减弱了端头的热载荷,强化了端头的热防护能力.通过电弧风洞试验可以获得相似的结果,内置普通C/C材料表层抗氧化层出现严重烧蚀,而内置高导C/C材料基本不变,验证了数值模拟方法的准确性以及内置高导C/C材料疏导式热防护结构的有效性.  相似文献   

10.
应变控制的热机械疲劳行为的数值模拟   总被引:1,自引:0,他引:1  
根据高温合金材料的力学性能,以弹粘塑性本构模型为基础,用数值模拟方法研究材料的热机械疲劳循环特性,模型将应变分为弹性应变、温度应变和粘塑性应变三部分,认为材料在高温循环载荷下呈现明显的弹粘塑性特征,根据虚位移原理建立轴对称体的弹粘塑性计算有限元格式,对于循环机械载荷和循环温度载荷,程序中采用了增量法迭代求解,在非线性项中不仅考虑了机械载荷增量的影响,同时也考虑了温度增量的影响,根据应变控制热机械疲劳的特点,发展了应变增量法的有限元计算方法、通过数值模拟,得到材料在各种循环载荷下的应力—应变响应,数值模拟较好地反映了粘塑性变形过程以及温度变化的效应,所描述的不可逆系统在某一时刻的状态完全由当时的状态参数、内变量、承载时间及塑性应变累积量决定,对带缺口试件的模拟结果显示了程序对复杂轴对称结构进行热机械疲劳计算的有效性。  相似文献   

11.
In the present work, two-dimensional temperature variations and a position of a weldpool within a workpiece during keyhole plasma arc welding are determined. The model allows to include temperature dependent thermal properties, variable welding speed, different keyhole radii and a nonlinear boundary condition of the third kind on the upper and the lower surfaces of the workpiece. The upwind scheme (donor cell method) is employed to present physically realistic numerical solutions. The obtained results can be used for controlling the plasma arc welding process through the controlling of plasma jet diameter. Received on 10 March 1998  相似文献   

12.
This paper utilizes element birth and death finite element technique to control the process of filling metal step by step during multipass welding process. The dynamic thermal distributions and strain evolutions are simulated in 10 mm SUS310 stainless steel in multipass welding after taking into consideration of the fluid flow in the weld pool, the latent heat, taking into account the effect of the deformation in weld pool, change of initial temperature and solidification shrinkage. At the same time, the driving forces to weld solidification cracks of each weld pass are obtained successfully according to simulated thermal cycle (temperature against time) and mechanical strain cycle (mechanical strain against time). The results show the patterns of distribution of the driving force are similar to those of surface fusion welding. The driving force of first weld pass is larger than following weld passes and the driving force decreases gradually in company with welding processing. Sequent welding processes affect the mechanical strain distributions of previous weld pass, of which the tensile mechanical strain changes to compressive strain. In addition, the driving forces are analyzed and weld solidification cracks are predicted during multipass welding. The predicted results agree well with the experiments. Therefore, the simulated results in this study provide the foundation for predicting weld solidification cracking in actual weldment.  相似文献   

13.
Friction stir spot welding is a new technique used in industries for spot joining dissimilar combinations. In this investigation, dissimilar combinations of Al5052 aluminium and C10100 copper are joined by using this technique with variations of important process parameters, such as the tool rotational speed, dwell duration, and plunging depth. A central composite design model is developed for establishing empirical relationships between the process parameters and the fatigue life of the joints (number of cycles to fracture). The analysis of variance is used for determining the significance of the developed model. The response surface methodology is used for maximizing the fatigue strength. By confirmation experiments, the model is validated, and the error is found to be within four percent.  相似文献   

14.
Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.  相似文献   

15.
The current paper presents a finite element simulation of the residual stress field associated with a three pass slot weld in an AISI 316LN austenitic stainless steel plate. The simulation is split into uncoupled thermal and mechanical analyses which enable a computationally less expensive solution. A dedicated welding heat source modelling tool is employed to calibrate the ellipsoidal Gaussian volumetric heat source by making use of extensive thermocouple measurements and metallographic analyses made during and after welding. The mechanical analysis employs the Lemaitre–Chaboche mixed hardening model. This captures the cyclic mechanical response which a material undergoes during the thermo-mechanical cycles imposed by the welding process. A close examination of the material behaviour at various locations in the sample during the welding process, clearly demonstrates the importance of defining the correct hardening and high temperature softening behaviour. The simulation is validated by two independent diffraction techniques. The well-established neutron diffraction technique and a very novel spiral slit X-ray synchrotron technique were used to measure the residual stress–strain field associated with the three-pass weld. The comparison between the model and the experiment reveals close agreement with no adjustable parameters and clearly validates the used modelling procedure.  相似文献   

16.
The effects of welding current and time on the joints quality of the resistance spot welded of DP600 by evaluating the welding nugget sizes and mechanical properties were investigated experimentally. The experiment results show that different welding current and time lead to different welding nugget sizes. There exists a critical welding parameter which can make the welding nugget size attain optimum. The welding nugget size is a critical control parameter of the mechanical properties of the spot welded joint.  相似文献   

17.
Welding processes involve high temperatures and metallurgical and mechanical consequences that must be controlled. For this purpose, numerical simulations have been developed to study the effects of the process on the final structure. During the welding process, the material undergoes thermal cycles that can generate different physical phenomena, like phase changes, microstructure changes and residual stresses and distortions. But the accurate simulation of transient temperature distributions in the part needs to carefully take account of the fluid flow in the weld pool. The aim of this paper is thus to propose a new approach for such a simulation taking account of surface tension effects (including both the “curvature effect” and the “Marangoni effect”), buoyancy forces and free surface motion.The proposed approach is validated by two numerical tests from the literature: a sloshing test and a plate subjected to a static heat source. Then, the effects of the fluid flow on temperature distributions are discussed in a hybrid laser/arc welding example.  相似文献   

18.
为探讨陶瓷封装双列直插器件在焊接后出现开裂的问题,应用云纹干涉法和Twyman/Green干涉法实时测试了该类型器件在焊接过程中的面内和离面变形情况,并将测试数据与有限元法相结合,评估了焊接过程中器件内部因印制板变形而产生的应力大小。由此对原先"焊接导致开裂"的说法做出了评价。同时,通过器件的变形测试,探讨了优化焊接工艺的方法。研究结果表明,焊接顺序对器件内部热应力和器件变形影响不大,而适当提高器件高度可有效减小焊接时的热应力。  相似文献   

19.
In this paper, finite element model is used to carry out thermal analysis of bead-on-plate welding. The model followed the proposed five step strategies which were then built into a model to obtain temperature history at the positions of thermocouples. Temperature field was also evaluated by comparing predicted weld bead with the actual weld bead. Using these proposed strategies, well matched temperature histories and temperature field have been obtained.  相似文献   

20.
Advanced aerospace structures are often subjected to combined thermal and mechanical loads. The fracture-mechanics behavior of these structures may be altered by the thermal state existing around the crack. Hence, design of critical structural elements requires the knowledge of stress-intensity factors under both thermal and mechanical loads. This paper describes the development of an experimental technique to verity the thermal-stress-intensity factor generated by a temperature gradient around the crack. Thin plate specimens of a model material (AISI-SAE 1095 steel) were used for the heart transfer and thermal-mechanical fracture tests. Rapid thermal loading was achieved using high-intensity focussed infrared spot heaters. These heaters were also used to generate controlled temperature rates for heat-transfer vertification tests. The experimental results indicate that thermal loads can generate stress-intensity factors large enough to induce crack growth. The proposed thermal-stress-intensity factors appear to have the same effect as the conventional mechanical-stress-intensity factors with respect to fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号