首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
无陀螺捷联惯性测量装置与传统捷联惯导系统的主要区别是角速度的获取方式不同,角速度的解算精度是无陀螺捷联惯性导航系统的核心问题,决定了系统的性能及实际应用的可行性。本文剖析了无陀螺捷联惯性测量装置的误差来源,建立了无陀螺捷联惯性导航系统角速度解算数学模型,并重点探讨了加速度计元件误差对角速度解算精度的影响。进行了无陀螺捷联惯性测量装置试验,结果表明,尽管计算误差较大,但无陀螺捷联惯性测量装置可以反映出运动平台的角运动规律,实际应用中对加速度计精度和计算机速度要求较高,另外应寻找更好的算法尽量补偿角速度解算误差。  相似文献   

2.
针对振动环境下机抖激光陀螺敏感轴产生动态偏移造成惯导系统精度下降的问题,从理论上推导了机抖激光陀螺敏感轴动态偏移误差模型,并结合工程实际建立了简化的误差模型;在此简化误差模型基础上,推导了陀螺敏感轴动态偏移造成的等效陀螺漂移与比力、角速度的耦合关系;将机抖激光陀螺敏感轴动态偏移误差归结为9个待辨识参数,针对该模型中的待辨识参数设计了标定方法,并给出了标定实验设计原则;以姿态误差为观测量进行振动实验对待辨识参数进行估计,振动实验结果表明,在10 min线振动时间内,机抖激光陀螺敏感轴动态偏移误差补偿后,捷联惯导系统纯惯导速度误差减小30%以上。  相似文献   

3.
全加速度计惯性测量系统角速度解算方法的优化   总被引:2,自引:0,他引:2  
全加速度计惯性测量技术是利用加速度计代替原来的陀螺来解算载体的姿态和位置信息。利用十二加速度计惯性组合配置方案的冗余信息,通过积分法、开平方法和迭代法解算出三种角速度,然后依据加权平均原理将上述三种角速度信息进行数据融合并对角速度进行补偿。经过算法补偿,解决了角速度误差随时间积累而发散的问题,同时解算精度得到了大幅提高。通过实验,将由全加速度计惯性测量系统输出信息解算出的角速度值与理论角速度值进行比较。通过对比,开平方法和迭代法相对于积分法对角速度解算误差的发散均有较好的抑制效果,应用加权平均法相比其他三种方法得到的角速度精度更高,且误差不随时间发散。为该研究领域提供了较好的参考。  相似文献   

4.
分析了转位机构角速度误差和角位置误差对旋转式捷联惯导系统的影响,研究了旋转式捷联惯导系统的基本解算结构,这些对提高旋转式捷联惯导系统的精度具有十分重要的意义。详细介绍了角度调整型和角速度调制型两种旋转式捷联惯导系统的基本解算结构,给出了转位机构角速度误差和角位置误差在这两种解算结构下的误差传播特性。研究结果表明,对于角速度调制型解算结构,恒定的转位机构角速度误差等效于方位常值陀螺漂移,将对系统精度产生很大的影响,转位机构角位置误差与两个水平方向的角速度互相耦合,产生两个水平方向上的角速度误差;对于角度调制型解算机构,转位机构的角速度误差和角位置误差不引入到捷联回路,对捷联回路不产生影响,但是在IMU姿态到载体姿态变换的过程中,转位机构角位置误差引起载体航向误差,且航向误差的大小与转位机构的角位置误差相等。  相似文献   

5.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

6.
光纤捷联惯导系统高阶误差模型的建立与分析   总被引:2,自引:0,他引:2  
针对多位置标定算法中利用的陀螺和加表的误差模型,在捷联惯导系统误差传播方程中,考虑陀螺和加表的标度因数误差和安装误差,建立了一种高阶误差模型。为了评价该模型的准确性,将其与不考虑标度因数误差和安装误差的模型比较,设计了系统静态和动态仿真实验。在系统静态仿真中,分别加入陀螺漂移和加表安装误差,而在动态仿真中同时加入各项误差项,求取以这些误差项为初值的模型微分方程的解,使其与惯导系统输出误差进行比较。仿真结果发现,建立的高阶误差模型比不考虑标度因数误差和安装误差的模型精度高出约三个数量级。  相似文献   

7.
激光捷联系统中采用低通滤波器消除激光陀螺角增量输出中机械抖动引入的干扰信号,同时也对陀螺敏感的外界惯性输入角速度信号进行了频率整形,产生了视在圆锥误差,此时传统圆锥补偿算法未考虑滤波器影响补偿精度严重降低.针对本系统采用了31阶低通滤波器对陀螺的角增量输出整形,分析了其引入的视在圆锥误差,基于滤波器的频率特性,采用五子样圆锥误差补偿算法,即在旋转矢量更新周期内有五个陀螺采样信号,可以构成四种不同时间间隔的陀螺输出角增量信号的叉积,利用这些叉积的线性组合更新旋转矢量.仿真结果表明,对经过滤波器整形的陀螺输出角增量进行补偿,优化的圆锥补偿算法的补偿精度明显优于传统圆锥补偿算法,使系统姿态角的精度提高了两个数量级.  相似文献   

8.
为了进一步提高光纤陀螺标度因数的测试精度,对光纤陀螺标度因数测试过程进行理论分析,确定了影响光纤陀螺标度因数测试误差的主要因素,并进行了计算机仿真和实验验证。结果表明:由于安装误差、北向地速分量以及转台速率精度的影响,光纤陀螺测试起始位置和采样时间的选择均会给小速率标度因数不对称性和非线性度的测试带来误差,而大速率标度因数的测试基本不受影响;通过对各输入速率点进行整圈采样,可以有效地降低小速率标度因数的测试误差,使其测试精度提高1个量级以上,实现对光纤陀螺标度因数性能更加准确的测试。  相似文献   

9.
针对无陀螺捷联惯导系统解算载体姿态角速度精度不高的系统瓶颈,分析现有的一种九加速度计配置方案角速度信息输出特征,提出通过改进解算方法,在载体上同时获取两套相对完整而独立的姿态角速度信息从而构成姿态角速度双路组合方案的设想,并且在该组合方案中引入反馈型自适应神经网络,通过设置合理的神经网络学习周期,提供更逼近真实值的加速度计输出,结合包含加速度计误差少、没有加速度计误差积累两种优点的姿态角速度辅助算法,以获得更高精度的载体姿态角速度输出,进一步提高无陀螺捷联惯导系统导航精度.仿真结果验证了该设计思想可行性,并且证明了角速度双路组合方案相对普通角速度解算方案在精度上的优势.  相似文献   

10.
光谱不对称性是宽带光源的非理想特性之一,这种特性对标度因数的影响在中高精度光纤陀螺中会逐渐显现出来。为了分析光谱不对称性及其对光纤陀螺的影响,结合光纤陀螺所用宽带光源的典型光谱参数,对宽带光源的光谱不对称性进行了理论计算,分析了传统量化光谱不对称性方法存在的问题和局限性,并在此基础上提出了一种更加准确合理的光谱不对称性的量化指标。研究表明,光谱不对称性会产生相对相位误差,并在调制通道中产生视在增益误差,导致陀螺第二反馈回路"错误"调整调制通道的增益,引起光纤陀螺标度因数的非线性误差。对于类矩形光谱当不对称度小于10~(-2)时,视在增益误差引起的标度因数非线性误差会达到25′10~(-6)。因此在进行光源设计时需要将光谱不对称性作为一个定量考虑的指标。  相似文献   

11.
捷联惯导系统的捷联算法误差补偿   总被引:2,自引:0,他引:2  
用Millie提出的三子样圆锥误差补偿算法和Oleg Salychey提出了划船 误差补偿算法对相应的误差进行了补偿,并对补偿算法进行了数字仿真。仿真结果表明:所采用的误差补偿算法对提高捷联惯导系统的精度作用显著。  相似文献   

12.
激光陀螺捷联惯导系统误差补偿技术   总被引:1,自引:0,他引:1  
结合工程实际应用,充分考虑激光陀螺捷联惯导系统的特性,重点分析了三种与系统动态运动相关的误差,包括尺寸效应误差、圆锥误差以及划船误差。从工程应用的角度出发,分别推导了尺寸效应误差补偿算法、圆锥误差补偿递推算法和划船误差补偿递推算法,并进行了大量的试验,对补偿效果进行了充分地验证。实验结果表明,补偿算法不增加导航计算机的负担,保证了系统在高动态条件下的精度,可以充分发挥激光陀螺的优势,提高激光陀螺捷联惯导系统的导航精度。  相似文献   

13.
速率偏频技术提高激光陀螺精度的理论研究   总被引:6,自引:3,他引:3  
以分析激光陀螺主要误差源出发点,从理论上研究了速率偏频技术的作用,指出它可有效地降低激光陀螺锁区引入的随机游走误差,部分地补偿激光陀螺谐振腔中的光束位移引起的不可控激光陀螺的零偏误差,并可解决拦动激光陀螺在系统使用中的锥形误差(Coning Error)和划桨误差(Sculling Error)。利用激光陀螺的拍频方程和拦动偏频激光陀螺的拍频近似解,得出了速率偏频激光陀螺随机游走误差与速率偏频系统参数的表达式,并指出了速率偏频技术的特点及速率偏频技术要解决的主要技术问题。  相似文献   

14.
线振动硅微机械陀螺结构误差参数分离和辨识   总被引:3,自引:5,他引:3  
推导了线振动微机械陀螺的三自由度误差力学方程,并详细分析了陀螺耦合误差的产生机理。分析结果表明,各种结构误差是导致陀螺耦合误差信号的主要原因。在此基础上,利用振动和模态理论给出了陀螺结构误差参数的分离和辨识的试验方法和结果。试验结果表明,同相耦合分量和正交耦合分量是微机械陀螺的两种主要误差信号,造成正交耦合的主要原因是驱动轴和检测轴之间的刚度耦合以及驱动轴和检测轴各自的刚度不对称,造成同相耦合的主要原因是驱动轴和检测轴之间的阻尼耦合以及检测轴刚度不对称和驱动力不对称。结构误差参数的分离和辨识试验方法将为下一步的陀螺结构优化、微加工工艺改进以及耦合误差抑制提供基础。  相似文献   

15.
系统地讨论了路径线法及曲面拟合法误差发展。反分析计算误差可分成截断误差及增殖误差两部分,截断误差及增殖误差受测量量计数目及量计间距影响,增加量计数,减小量计间距可以减小截断误差,但不利于控制增殖误差。反分析计算误差发展可分为三个过程:开始,计算误差主要来源于截断误差;其后,误差受截断误差和增殖误差共同影响;最后,增殖误差是主要的。无论是曲面拟合法还是路径线法,各量计线上增殖误差可用时间多项式函数来表示,且多项式最高幂次数与量计线数目有关。  相似文献   

16.
圆锥积分算法在划船效应补偿算法中的应用   总被引:4,自引:0,他引:4  
介绍了捷联惯导系统中圆锥补偿算法与划船误差补偿算法之间的相似性;根据它们之间的相似性得出了一简单的公式,该公式能够将一种圆锥补偿算法转换成相应的划船误差补偿算法;此外还给出了该公式的推导过程及几种高精度补偿算法;最后进行了仿真。  相似文献   

17.
董守平  双凯 《实验力学》1997,12(1):98-104
本文针对PIV技术的直接测量法中图像的可读性和可测性,讨论了从模拟图像到数字图像,最后到粒子像斑中心位置的确定过程中的误差规律;并提出了一种称之为粒子像斑定位偏差综合评估的试验方法。  相似文献   

18.
圆锥误差和量化误差是激光捷联惯性导航系统姿态解算误差的两个最主要的误差源.从分析圆锥误差产生的机理出发,分别分析了以角度和角速度为计算参数的圆锥误差补偿算法,并对量化误差对圆锥误差补偿算法的影响进行了研究.通过理论分析和数字仿真,得出在实际工程应用中,采用角速度为输入信息的激光捷联惯性导航系统姿态算法应该在考虑量化误差的情况下,采用以角速度为计算参数的圆锥误差补偿算法.  相似文献   

19.
船用惯性导航系统姿态测量误差辨识及其补偿方法研究   总被引:1,自引:0,他引:1  
本文分析了某型号船用惯性导航系统(SINS)的试验数据,结果表明,SINS的姿态误差主要来源于水平测姿传感器。据此,本文对该SINS水平姿态测量误差的辨识及其补偿方法进行了研究,并建立了水平测姿误差的回归数学模型,以提高SINS姿态精度  相似文献   

20.
惯性导航系统的误差估计   总被引:8,自引:1,他引:8  
惯性导航系统(INS)以其自主的工作能力广泛应用于军事武备的导航、制导与控制系统和国民经济的诸多领域。它的主要缺点是定位误差随其工作时间的增长而增大。对惯导系统的误差进行估计和补偿是在保证性能价格比的前提下,提高惯性导航系统精度的有效途径。目前,对惯导系统的误差修正均采用外信息(如GPS的输出信息)校正,即在INS工作的全部时间内,定期地利用GPS输出的速度和位置信息与INS输出的相应信息的差值作为观测量,对INS误差进行估计和补偿。Kalman滤波的方法广泛地应用于惯导系统的误差修正初始对准。本研究了当地水平惯导系统的误差估计和补偿问题。分析结果表明,采用Kalman滤波的方法,可以精确地估计惯导系统的误差(包括陀螺漂移和加速度计零偏),误差估计的精度高,并且估计的方差阵收敛快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号