首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
圆锥误差和量化误差是激光捷联惯性导航系统姿态解算误差的两个最主要的误差源.从分析圆锥误差产生的机理出发,分别分析了以角度和角速度为计算参数的圆锥误差补偿算法,并对量化误差对圆锥误差补偿算法的影响进行了研究.通过理论分析和数字仿真,得出在实际工程应用中,采用角速度为输入信息的激光捷联惯性导航系统姿态算法应该在考虑量化误差的情况下,采用以角速度为计算参数的圆锥误差补偿算法.  相似文献   

2.
激光陀螺捷联惯导系统误差补偿技术   总被引:1,自引:0,他引:1  
结合工程实际应用,充分考虑激光陀螺捷联惯导系统的特性,重点分析了三种与系统动态运动相关的误差,包括尺寸效应误差、圆锥误差以及划船误差。从工程应用的角度出发,分别推导了尺寸效应误差补偿算法、圆锥误差补偿递推算法和划船误差补偿递推算法,并进行了大量的试验,对补偿效果进行了充分地验证。实验结果表明,补偿算法不增加导航计算机的负担,保证了系统在高动态条件下的精度,可以充分发挥激光陀螺的优势,提高激光陀螺捷联惯导系统的导航精度。  相似文献   

3.
在捷联惯导系统中,陀螺和加速度计直接感测载体的角运动、线运动和干扰运动,由于载体角运动的影响,当三个加速度计测量质心与载体质心不重合时,将引起加速度计的测量误差(即尺寸效应误差)。对于中高精度的捷联惯导系统,当载体处于高动态情况下,尺寸效应误差已不能忽略,需要对其进行误差补偿。首先对加速度计组件在一般安装关系下的尺寸效应误差模型进行推导,然后提出一种新的利用陀螺输出角度增量信息和尺寸效应参数来计算加速度计尺寸效应误差的积分表达式,将其从加速度计输出速度增量中去除,即可完成尺寸效应误差补偿。最后通过仿真证明,新补偿算法产生的导航系统定位误差的舒拉周期振荡幅值明显减小,定位精度比补偿前提高了5-6倍左右。  相似文献   

4.
基于对偶性原理捷联惯导划船误差补偿优化算法   总被引:1,自引:0,他引:1  
先介绍了算法的对偶性原理,并根据此原理和圆锥误差补偿的一般形式,得到了陀螺和加速度计任意子样数下划船误差补偿的一般形式;然后在经典的划船运动条件下,对划船误差补偿算法的系数进行优化,得到了优化后的通用公式及其算法漂移;最后,通过对圆锥误差算法和划船误差算法的复杂度、算法漂移的比较,得出一些有益结论。基于该方法可以充分利用圆锥误差算法的已有结果,由计算机编程计算得到划船误差补偿的任意子样数算法,无需繁琐的重复性推导。  相似文献   

5.
挠性捷联惯性导航系统误差补偿技术   总被引:1,自引:0,他引:1  
为了补偿载体角运动和振动引起的捷联惯性导航系统导航误差,通过分析载体角运动引起的圆锥误差,挠性陀螺刻度因数非线性、姿态角速率引起的加表零位变化等因素对导航结果的影响,采用三子样算法和非线性补偿技术,对上述误差进行了补偿。摇摆试验和跑车试验证明,通过上述补偿后,姿态精度、水平定位精度、垂直定位精度有明显的提高。  相似文献   

6.
捷联式惯性导航系统算法研究   总被引:5,自引:1,他引:4  
对高动态环境下的高精度捷联惯性导航系统的算法进行了深研究。中提出了一种新的三回路捷联惯尼算法,该算法具有姿态圆锥补偿和速度的划船和转动效应补偿。中推导出三回路算法中的导航系,机体系和地球系更新的数学模型,给出了姿态圆锥补偿、速度划船效应和转动效应的数学模型。并对该算法进行了仿真研究,最后给出了计算仿真结果。  相似文献   

7.
捷联惯性导航系统一般采用圆锥补偿算法来消除圆锥误差的影响,从而提高姿态计算的精度.圆锥补偿算法大致有两种设计思想:首先是基于误差最小化原理,利用Borze旋转矢量进行设计;其次是基于二重积分,利用Goodman-Robinson有限转动定理进行设计.根据这两种设计思想,对二子样优化算法和二子样修正算法进行了详细地推导,然后综合这两种算法的优点形成了一种高精度的捷联姿态算法,并进行了仿真验证.仿真结果表明,改进后的捷联姿态算法在不增加子样数的同时,对圆锥误差的补偿精度大大高于二子样优化算法和二子样修正算法.  相似文献   

8.
捷联惯导系统算法比较研究   总被引:8,自引:0,他引:8  
运用四子样圆锥补偿现代捷联惯导系统姿态算法、针对船舶的摇摆运动在数字信号处理芯片(DSPs)上进行了仿真,并与三子样圆锥补偿算法,三子样等效转动矢量法和单子样毕卡逼近法的仿真,并与三子样圆锥补偿算法、三子样等效转动矢量法和单子样毕卡逼近法的仿真结果进行了比较。结果表明:四子样圆锥补偿能更有效地抑制不可交换误差,提高姿态精度,且整个导航算法在TMS320C6211 EVM仿真器上运行,所花时间为5.3毫秒。  相似文献   

9.
尺寸效应误差是捷联惯导系统一个重要误差源。从理论上分析了尺寸效应误差的产生机理和对系统精度的影响。在此基础之上,采用多项式拟合法推导出了尺寸效应误差双子样补偿算法,并且根据尺寸效应误差的产生原因和规律,提出了尺寸效应误差参数速率标定方法。理论分析和实验结果表明,尺寸效应误差是系统在角运动条件下由于系统本身物理结构所形成的固有误差,在对其进行补偿时应当采取硬件设计和软件算法补偿相结合的方式;采用双子样补偿算法对加速度测量进行尺寸效应误差补偿,补偿前加速度测量误差最大可达0.06g,而补偿后小于1×10-4g,水平定位误差也降低10%左右。  相似文献   

10.
捷联惯性测量组合标定的仿真研究   总被引:10,自引:2,他引:8  
本对卡尔曼滤波在捷联惯性测量组合标定中的应用进行了研究,提出了一种辨识激光陀螺和加速度计静态误差的在线正交标定方案,并在不同滤波条件下了仿真验证,结果表明这是一种比较有效的误差标定方法。  相似文献   

11.
针对捷联惯性测量组合误差的数学模型,提出了惯性组合误差补偿的计算方法,推导了计算过程,得到了陀螺和加速度计误差补偿公式.通过补偿计算,能够得到弹体在采样时间间隔内运动的视速度增量和角增量.该算法能够满足应用的精度要求,对捷联惯性测量系统的误差补偿有一定的有效性和可行性.  相似文献   

12.
圆锥积分算法在划船效应补偿算法中的应用   总被引:4,自引:0,他引:4  
介绍了捷联惯导系统中圆锥补偿算法与划船误差补偿算法之间的相似性;根据它们之间的相似性得出了一简单的公式,该公式能够将一种圆锥补偿算法转换成相应的划船误差补偿算法;此外还给出了该公式的推导过程及几种高精度补偿算法;最后进行了仿真。  相似文献   

13.
引入一种以误差补偿为目的的新的相移算法设计方法-待定系数法,该方法首先在算法表达式中引入一系列待定参数,根据对误差补偿的要求提供的约束方程,从而解出这些未知参数。待定系数法使得算法设计和误差分析是同时进行的,由待定系数法设计的相移算法对算法中设计中所考虑的误差源具有补偿性能。  相似文献   

14.
圆锥误差是影响捷联惯导系统姿态算法精度的原理性误差,其对三轴激光捷联惯导系统精度的影响显著.对三轴机抖激光陀螺捷联惯导系统,除了弹体运动可能引入圆锥运动外,三轴机抖激光陀螺产生的机械抖动也会在惯导系统中引入圆锥运动.文中分析了两种圆锥运动在三轴激光捷联惯导系统中产生的机理,并给出了圆锥误差补偿算法在不同试验条件下的应用效果.  相似文献   

15.
精密测角系统的幅相变换与误差补偿   总被引:1,自引:0,他引:1  
本文重点介绍SJ-1型测角系统幅相变换部分的工作原理、误差分析及误差补偿。该系统的主要特点是:采用单相激磁的双通道工作方式,在幅相变换和误差补偿方面,突破了一次谐波和二次谐波误差补偿的技术关键,具有较高的抗干扰能力及长期工作的稳定、可靠。  相似文献   

16.
基于快速正交搜索的车载导航方法   总被引:1,自引:0,他引:1  
以某型自行火炮炮载惯导系统为研究对象,针对系统剩余高阶非线性误差得不到有效补偿的问题,结合卡尔曼滤波(KF),提出了基于快速正交搜索(FOS)的组合估计方法,既消除了线性误差,也对系统的高阶非线性误差起到了良好的抑制作用。试验结果表明,在没有卫星信号的情况下,与单独使用KF相比,FOS/KF可以有效提高导航精度,经过补偿后的平均水平速度误差仅为0.034 m/s,定位误差可基本保持在10 m以内,实现了非线性条件下的高精度自主导航。  相似文献   

17.
惯性导航系统的误差估计   总被引:8,自引:1,他引:8  
惯性导航系统(INS)以其自主的工作能力广泛应用于军事武备的导航、制导与控制系统和国民经济的诸多领域。它的主要缺点是定位误差随其工作时间的增长而增大。对惯导系统的误差进行估计和补偿是在保证性能价格比的前提下,提高惯性导航系统精度的有效途径。目前,对惯导系统的误差修正均采用外信息(如GPS的输出信息)校正,即在INS工作的全部时间内,定期地利用GPS输出的速度和位置信息与INS输出的相应信息的差值作为观测量,对INS误差进行估计和补偿。Kalman滤波的方法广泛地应用于惯导系统的误差修正初始对准。本研究了当地水平惯导系统的误差估计和补偿问题。分析结果表明,采用Kalman滤波的方法,可以精确地估计惯导系统的误差(包括陀螺漂移和加速度计零偏),误差估计的精度高,并且估计的方差阵收敛快。  相似文献   

18.
在导航过程中惯性平台绕方位轴旋转能够有效地调制陀螺的常值漂移,但加速度计安装坐标系和陀螺安装坐标系的不重合会导致加速度计零偏也被调制为一个变化量,因此需要建立其旋转误差模型进行补偿。针对平台惯导台体绕方位轴旋转时加速度计误差补偿的实际需要,建立加速度计由初始安装误差角引起的旋转误差模型。模型主要针对旋转过程中由初始安装误差角导致的加速度计和水平面之间的不重合度,模型包括角度叠加模型和单位矢量旋转模型。通过对两种模型仿真分析,表明角度叠加模型计算量小,并且能够满足实际误差补偿需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号