首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain.  相似文献   

2.
The method of manufactured solutions is used to verify the order of accuracy of two finite‐volume Euler and Navier–Stokes codes. The Premo code employs a node‐centred approach using unstructured meshes, while the Wind code employs a similar scheme on structured meshes. Both codes use Roe's upwind method with MUSCL extrapolation for the convective terms and central differences for the diffusion terms, thus yielding a numerical scheme that is formally second‐order accurate. The method of manufactured solutions is employed to generate exact solutions to the governing Euler and Navier–Stokes equations in two dimensions along with additional source terms. These exact solutions are then used to accurately evaluate the discretization error in the numerical solutions. Through global discretization error analyses, the spatial order of accuracy is observed to be second order for both codes, thus giving a high degree of confidence that the two codes are free from coding mistakes in the options exercised. Examples of coding mistakes discovered using the method are also given. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
随着计算机技术的飞速进步,计算流体力学得到迅猛发展,数值计算虽能够快速得到离散结果,但是数值结果的正确性与精度则需要通过严谨的方法来进行验证和确认.制造解方法和网格收敛性研究作为验证与确认的重要手段已经广泛应用于计算流体力学代码验证、精度分析、边界条件验证等方面.本文在实现标量制造解和分量制造解方法的基础上,通过将制造解方法精度测试结果与经典精确解(二维无黏等熵涡)精度测试结果进行对比,进一步证实了制造解精度测试方法的有效性,并将两种制造解方法应用于非结构网格二阶精度有限体积离散格式的精度测试与验证,对各种常用的梯度重构方法、对流通量格式、扩散通量格式进行了网格收敛性精度测试.结果显示,基于Green-Gauss公式的梯度重构方法在不规则网格上会出现精度降阶的情况,导致流动模拟精度严重下降,而基于最小二乘(least squares)的梯度重构方法对网格是否规则并不敏感.对流通量格式的精度测试显示,所测试的各种对流通量格式均能达到二阶精度,且各方法精度几乎相同;而扩散通量离散中界面梯度求解方法的选择对流动模拟精度有显著影响.  相似文献   

4.
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high‐order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier–Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity–velocity formulation for a two‐dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high‐order compact and non‐compact finite‐differences from fourth‐order to sixth‐order of accuracy. The other scheme used spectral methods instead of finite‐difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed‐order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Code verification is the process of ensuring, to the extent possible, that there are no algorithm deficiencies and coding mistakes (bugs) in a scientific computing simulation. Order of accuracy testing using the Method of Manufactured Solutions (MMS) is a rigorous technique that is employed here for code verification of the main components of an open-source, multiphase flow code – MFIX. Code verification is performed here on 2D and 3D, uniform and stretched meshes for incompressible, steady and unsteady, single-phase and two-phase flows using the two-fluid model of MFIX. Currently, the algebraic gas-solid exchange terms are neglected as these can be verified via techniques such as unit-testing. The no-slip wall, free-slip wall, and pressure outflow boundary conditions are verified. Temporal orders of accuracy for first-order and second-order time-marching schemes during unsteady simulations are also assessed. The presence of a modified SIMPLE-based algorithm in the code requires the velocity field to be divergence free in case of the single-phase incompressible model. Similarly, the volume fraction weighted velocity field must be divergence-free for the two-phase incompressible model. A newly-developed curl-based manufactured solution is used to generate manufactured solutions that satisfy the divergence-free constraint during the verification of the single-phase and two-phase incompressible governing equations. Manufactured solutions with constraints due to boundary conditions as well as due to divergence-free flow are derived in order to verify the boundary conditions.  相似文献   

6.
为克服传统浸入边界法的质量不守恒缺陷,提出了一种用于可压缩流固耦合问题的强耦合预估-校正浸入边界法。通过阐述一般流固耦合系统的矩阵表示,推导了流固耦合系统的强耦合Gauss-Seidel迭代格式,进一步导出预估-校正格式,提出了预估-校正浸入边界法。该方法使用无耦合边界模型对流体进行预估,将流固耦合边界视为自由面,固体原本占据的空间初始化为零质量的单元,允许流体自由穿过耦合边界。对于流体的计算,使用带有minmod限制器的二阶MUSCL有限体积格式和基于Zha-Bilgen分裂的AUSM+-up方法,配合三阶Runge-Kutta格式推进时间步。在校正步骤中,通过一组质量守恒的输运规则来实现输运过程。输运算法可概括为将边界内侧的流体进行标记,根据标记顺序以均匀方式分割和移动流体,产生一个指向边界外侧的流动,最后在边界附近施加速度校正保证无滑移条件。标记和输运算法避免了繁琐的对截断单元的几何处理,确保了算法易于实现。对于固体的计算,分别采用一阶差分格式和隐式动力学有限元格式求解刚体和线弹性体,并利用高斯积分获得固体表面的耦合力。使用预估-校正浸入边界法计算了一维问题和二维问题。在一维活塞问题中,获得了压力分布、相对质量历史和误差曲线,并与其他方法进行了对比。在二维的激波冲击平板问题中,获得了数值模拟纹影和平板结构的挠度历史,并与实验结果进行了对比。研究表明,该方法区别于传统的虚拟网格方法和截断单元方法,能够精确地维持流场的质量守恒并易于实现,且具有一阶收敛精度,能够较准确地预测激波绕射后的流场以及平板在激波作用下的挠度,为开发流固耦合算法提供了一种新的思路。  相似文献   

7.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

8.
We present a compact finite differences method for the calculation of two‐dimensional viscous flows in biological fluid dynamics applications. This is achieved by using body‐forces that allow for the imposition of boundary conditions in an immersed moving boundary that does not coincide with the computational grid. The unsteady, incompressible Navier–Stokes equations are solved in a Cartesian staggered grid with fourth‐order Runge–Kutta temporal discretization and fourth‐order compact schemes for spatial discretization, used to achieve highly accurate calculations. Special attention is given to the interpolation schemes on the boundary of the immersed body. The accuracy of the immersed boundary solver is verified through grid convergence studies. Validation of the method is done by comparison with reference experimental results. In order to demonstrate the application of the method, 2D small insect hovering flight is calculated and compared with available experimental and computational results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We present a higher-order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity–based shock-capturing approach. The cut cell grid is optimized by a nonintrusive cell agglomeration strategy in order to avoid problems with small or ill-shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero isocontour of a level set function. In flow configurations with high Mach numbers, a numerical shock-capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second-order diffusive term and small nonagglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach are verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries.  相似文献   

10.
The method of manufactured solutions (MMS) is a solution verification methodology for determining whether the implementation of a discretization method is achieving its theoretical order of accuracy. This methodology combines the advantages of grid refinement studies and comparison with exact solution, by modifying the governing equations solved within a code by adding a source term to drive the solution towards a predetermined analytic function. By solving the modified equations on a sequence of grids and comparing the differences between the converged solution and manufactured solution, the order of accuracy of the implementation can be investigated. However, in its current form, converged solutions on a sequence of grids are required which can be quite costly and difficult to obtain. In this paper, by comparing the MMS to the method for determining the theoretical order of accuracy of a discretization method, the residual formulation of the MMS is developed. This new formulation only requires that the residual of the discretized governing equations to be calculated and not the solution to the discretized equations, thus avoiding the computational cost and difficulties inherent in obtaining converged solutions. Furthermore, since only the residuals are interrogated, individual components of the flow solver can be tested, in isolation, allowing the MMS to be used more effectively in locating errors within the code. This new approach is demonstrated to yield the same order of accuracy as the original MMS using three different cases—one-dimensional porous media equation, one-dimensional St Venant equations and two-dimensional unstructured Navier–Stokes simulations.  相似文献   

11.
人为构造解方法是复杂多物理过程耦合程序正确性验证的重要方法之一,适用于二维拉氏大变形网格的流体、辐射耦合人为解模型较为少见。针对拉氏辐射流体力学程序正确性验证的需要,从二维拉氏辐射流体力学方程组出发,基于坐标变换技术,给出了拉氏空间到欧氏空间的物理变量导数关系式,开展了辐射流体耦合的人为解构造方法研究,构造了一类质量方程无源项的二维人为解模型,并应用于非结构拉氏程序LAD2D辐射流体力学计算的正确性考核,为流体运动网格上的辐射扩散计算提供了一种有效手段。数值结果显示观测到的数值模拟收敛阶与理论分析一致。  相似文献   

12.
王年华  李明  张来平 《力学学报》2018,50(3):527-537
非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义. 计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两个方面考察黏性流动模拟精度的影响因素. 首先从理论上分析了黏性通量离散中的“奇偶失联”问题,并通过基于标量扩散方程的制造解方法验证了“奇偶失联”导致的精度下降现象,进一步通过引入差分修正项消除了“奇偶失联”并提高了扩散方程计算精度;其次,在不同类型、不同质量的网格上进行基于扩散方程的制造解精度测试,考察单元梯度重构方法、界面梯度计算方法对扩散方程计算精度的影响,结果显示,单元梯度重构精度和界面梯度计算方法均对扩散方程计算精度起重要作用;最后对三个黏性流动算例(二维层流平板、二维湍流平板和二维翼型近尾迹流动)进行网格收敛性研究,初步验证了本文的结论,得到了计算精度和网格收敛性均较好的黏性通量计算格式.   相似文献   

13.
基于改进的移动最小二乘(MLS)二阶导数近似,建立了一种求解弹性静力问题的无网格弱-强形式结合法(MLS-MWS)。该方法采用节点离散求解域,通过MLS构造形函数,将求解域划分为边界域和内部域,并分别使用控制方程的局部弱形式和强形式来建立离散系统方程。对强形式中涉及的近似函数二阶导数计算,提出了一种将其转化为求两次一阶导数的方法,与传统方法相比,该方法计算简单、精度高。MLS-MWS法结合了弱、强形式无网格法的优点,Neumann边界条件容易满足,并且只需在边界区域进行积分。文中应用该方法分析了两个弹性力学平面问题,分析结果表明本文方法具有良好的精度和收敛性。  相似文献   

14.
In this study, we assess several interface schemes for stationary complex boundary flows under the direct‐forcing immersed boundary‐lattice Boltzmann methods (IB‐LBM) based on a split‐forcing lattice Boltzmann equation (LBE). Our strategy is to couple various interface schemes, which were adopted in the previous direct‐forcing immersed boundary methods (IBM), with the split‐forcing LBE, which enables us to directly use the direct‐forcing concept in the lattice Boltzmann calculation algorithm with a second‐order accuracy without involving the Navier–Stokes equation. In this study, we investigate not only common diffuse interface schemes but also a sharp interface scheme. For the diffuse interface scheme, we consider explicit and implicit interface schemes. In the calculation of velocity interpolation and force distribution, we use the 2‐ and 4‐point discrete delta functions, which give the second‐order approximation. For the sharp interface scheme, we deal with the exterior sharp interface scheme, where we impose the force density on exterior (solid) nodes nearest to the boundary. All tested schemes show a second‐order overall accuracy when the simulation results of the Taylor–Green decaying vortex are compared with the analytical solutions. It is also confirmed that for stationary complex boundary flows, the sharper the interface scheme, the more accurate the results are. In the simulation of flows past a circular cylinder, the results from each interface scheme are comparable to those from other corresponding numerical schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
为准确方便地施加本质边界条件,在连续掺混法(Continuous Blending Method, CBM)的框架下,通过增加一个边中节点,发展了采用二阶基底的无网格与二阶有限元的耦合离散方法。Galerkin弱形式的数值积分采用具二阶一致性的3点积分方法(Quadratically Consistent 3-point integration method,QC3)。与原本在QC3中采用的Nitsche法相比,所发展的耦合离散方法可像有限元法一样简单高效地施加本质边界条件,不向弱形式中引入额外项,也不依赖于任何人工参数。而且,数值结果还表明,QC3的计算精度也得到进一步提高。  相似文献   

16.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A high‐order difference method based multiphase model is proposed to simulate nonlinear interactions between water wave and submerged coastal structures. The model is based on the Navier–Stokes equations using a constrained interpolation profile (CIP) method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of wave–structure interactions. A more accurate interface capturing scheme, the volume of fluid/weighed line interface calculation (VOF/WLIC) scheme, is adopted as the interface capturing method. A series of computations are performed to verify the application of the model for simulations of fluid interaction with various structures. These problems include flow over a fixed cylinder, water entry of a circular cylinder and solitary waves passing various submerged coastal structures. Computations are compared with the available analytical, experimental and other numerical results and good agreement is obtained. The results of this study demonstrate the accuracy and applications of the proposed model to simulate the nonlinear flow phenomena and capture the complex free surface flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A six degrees of freedom (6DOF) algorithm is implemented in the open‐source CFD code REEF3D. The model solves the incompressible Navier–Stokes equations. Complex free surface dynamics are modeled with the level set method based on a two‐phase flow approach. The convection terms of the velocities and the level set method are treated with a high‐order weighted essentially non‐oscillatory discretization scheme. Together with the level set method for the free surface capturing, this algorithm can model the movement of rigid floating bodies and their interaction with the fluid. The 6DOF algorithm is implemented on a fixed grid. The solid‐fluid interface is represented with a combination of the level set method and ghost cell immersed boundary method. As a result, re‐meshing or overset grids are not necessary. The capability, accuracy, and numerical stability of the new algorithm is shown through benchmark applications for the fluid‐body interaction problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, an improved immersed boundary‐lattice Boltzmann method based on the force correction technique is presented for fluid‐structure interaction problems including the moving boundary interfaces. By introducing a force correction coefficient, the non‐slip boundary conditions are much better enforced compared with the conventional immersed boundary‐lattice Boltzmann methods. In addition, the implicit and iterative calculations are avoided; thus, the computational cost is reduced dramatically. Several numerical experiments are carried out to test the efficiency of the method. It is found that the method has the second‐order accuracy, and the non‐slip boundary conditions are enforced indeed. The numerical results also show that the present method is a suitable tool for fluid‐structure interaction problems involving complex moving boundaries.  相似文献   

20.
An efficient direct spectral domain decomposition method is developed coupled with Chebyshev spectral approximation for the solution of 2D, unsteady and incompressible Navier-Stokes equations in complex geometries. In this numerical approach, the spatial domains of interest are decomposed into several non-overlapping rectangular sub-domains. In each sub-domain, an improved projection scheme with second-order accuracy is used to deal with the coupling of velocity and pressure, and the Chebyshev collocation spectral method (CSM) is adopted to execute the spatial discretization. The influence matrix technique is employed to enforce the continuities of both variables and their normal derivatives between the adjacent sub-domains. The imposing of the Neumann boundary conditions to the Poisson equations of pressure and intermediate variable will result in the indeterminate solution. A new strategy of assuming the Dirichlet boundary conditions on interface and using the first-order normal derivatives as transmission conditions to keep the continuities of variables is proposed to overcome this trouble. Three test cases are used to verify the accuracy and efficiency, and the detailed comparison between the numerical results and the available solutions is done. The results indicate that the present method is efficiency, stability, and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号