首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations
Authors:Benwen Li  Shangshang Chen
Institution:1. Institute of Thermal Engineering, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China; 2. Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China
Abstract:An efficient direct spectral domain decomposition method is developed coupled with Chebyshev spectral approximation for the solution of 2D, unsteady and incompressible Navier-Stokes equations in complex geometries. In this numerical approach, the spatial domains of interest are decomposed into several non-overlapping rectangular sub-domains. In each sub-domain, an improved projection scheme with second-order accuracy is used to deal with the coupling of velocity and pressure, and the Chebyshev collocation spectral method (CSM) is adopted to execute the spatial discretization. The influence matrix technique is employed to enforce the continuities of both variables and their normal derivatives between the adjacent sub-domains. The imposing of the Neumann boundary conditions to the Poisson equations of pressure and intermediate variable will result in the indeterminate solution. A new strategy of assuming the Dirichlet boundary conditions on interface and using the first-order normal derivatives as transmission conditions to keep the continuities of variables is proposed to overcome this trouble. Three test cases are used to verify the accuracy and efficiency, and the detailed comparison between the numerical results and the available solutions is done. The results indicate that the present method is efficiency, stability, and accuracy.
Keywords:Chebyshev collocation spectral method  domain decomposition  influence matrix technique  incompressible Navier-Stokes equation  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号