首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


2.
A turbulent axisymmetric air jet impinging on a square cylinder mounted on a flat plate has been studied experimentally. Turbulence statistics and flow’s topology were investigated. When the surface was heated through uniform heat flux, local heat transfer coefficient was measured. The jet from a long round pipe, 75 pipe diameters (D) in length, at Reynolds number of 23,000, impinged vertically on the square cylinder (3D × 3D × 43D). Measurements were performed using particle image velocimetry, flow visualization using fluorescent dye and infrared thermography. The flow’s topology demonstrated a three-dimensional recirculation after separating from the square cylinder and a presence of foci between the bottom corner and the recirculation’s detachment line. The distribution of heat transfer coefficient was explained by the influence of these flow’s structures and the advection of kinetic energy. On the impingement wall of the square cylinder, a secondary peak in heat transfer coefficient was observed. Its origin can be attributed to very pronounced shear production coupled with the external turbulence coming from the free jet.  相似文献   

3.
An experimental investigation is performed to study the effect of jet to plate spacing and low Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length-to-diameter ratio (l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 500 and 8,000 and jet-to-plate spacing between 0.5 and 8 nozzle diameters. The local heat transfer characteristics are obtained using thermal images from infrared thermal imaging technique. It was observed that at lower Reynolds numbers, the effect of jet to plate distances covered during the study on the stagnation point Nusselt numbers is minimal. At all jet to plate distances, the stagnation point Nusselt numbers decrease monotonically with the maximum occurring at a z/d of 0.5 as opposed to the stagnation point Nusselt numbers at high Reynolds numbers which occur around a z/d of 6.  相似文献   

4.
Experimental studies were carried out to investigate the fluid flow and heat transfer around a heated circular cylinder which was placed at various distances of a wall boundary with different geometries (flat or curved plate) with subcritical Reynolds number ranging from 3.5×103 to 104. The effects of plate geometry (aspect ratio: W|H=1.0,1.5 and 2.0, and rim angle, φ=0°,60°,90°, and 120°) and gap ratio, (G|D=0.0,0.86,2.0,7.0,10.0) on the fluid flow and heat transfer characteristics (static pressure around cylinder surface, wake width, base pressure, pressure drag coefficients, velocity distribution, and both local and mean Nusselt numbers) were presented. Also flow visualization was carried out to illustrate the flow patterns around the cylinder at various gap ratios (G|D). It was found that the heat transfer and fluid flow characteristics are dependent on the plate geometry at all tested gap ratios, except for G|D=7.0 and 10.0, they are independent of the plate geometry.  相似文献   

5.
In the present study, the characteristics of supersonic rectangular microjets are investigated experimentally using molecular tagging velocimetry. The jets are discharged from a convergent–divergent rectangular nozzle whose exit height is 500 μm. The jet Mach number is set to 2.0 for all tested jets, and the Reynolds number Re is altered from 154 to 5,560 by changing the stagnation pressure. The experimental results reveal that jet velocity decays principally due to abrupt jet spreading caused by jet instability for relatively high Reynolds numbers (Re > ~450). The results also reveal that the jet rapidly decelerates to a subsonic speed near the nozzle exit for a low Reynolds number (Re = 154), although the jet does not spread abruptly; i.e., a transition in velocity decay processes occurs as the Reynolds number decreases. A supersonic core length is estimated from the streamwise distribution of the centerline velocity, and the length is then normalized by the nozzle exit height and plotted against the Reynolds number. As a result, it is found that the normalized supersonic core length attains a maximum value at a certain Reynolds number near which the transition in the velocity decay process occurs.  相似文献   

6.
The structural character and steady-state statistics of the turbulence inside a rib-wall circular duct is investigated by the large-eddy simulation (LES) methodology. The impetus of this study is to gain an understanding of the principle physics attributing to minimizing the pressure recovered (or maximizing the pressure loss) within the core flow. For a rib periodicity with height (h) to pitch (p) ratio p/h=5, the computational results show that the majority of turbulence produced due to the rib’s presence is concentrated near the rib crest leading edge. Pairs of counter-rotating streamwise vortices form soon after the leading edge that are quickly convected radially toward the core flow. The turbulent activity within the duct trough region is negligible compared to the turbulence levels of the core flow. At this rib periodicity, the separated shear layers from the trailing edge of each rib nearly reattach to the trough floor before reaching the next rib. The resultant irrecoverable pressure loss in the form a centerline frictional coefficient is verified by an ‘at-sea’ test on board a US Navy submarine. Based on the duct diameter, their Reynolds numbers are ReDLES=8×103 and (ReDexp)avg=4×106, respectively.  相似文献   

7.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

8.
This paper reports an experimental investigation of open channel turbulent flow over hemispherical ribs. A row of ribs consists of hemispheres closely placed to one another in the spanwise direction and cover the entire span of the channel. The pitch-to-height ratio is varied to achieve the so-called d-type, intermediate and k-type roughness. The Reynolds numbers based on water depth, h, and momentum thickness, θ, of the approach flow are respectively, Reh = 28,100 and Reθ = 1800. A particle image velocimetry is used to obtain detailed velocity measurements in and above the cavity. Streamlines, mean velocity and time-averaged turbulent statistics are used to study the effects of pitch-to-height ratio on the flow characteristics and also to document similarities and differences between the present work and prior studies over two-dimensional transverse rods. It was observed that interaction between the outer flow and the shear layers generated by ribs is strongest for k-type and least for d-type ribs. The results also show that hemispherical ribs are less effective in augmenting flow resistance compared to two-dimensional transverse ribs. The levels of the Reynolds stresses and budget terms increase with increasing pitch-to-height ratio inside the roughness sublayer.  相似文献   

9.
The near wake structure of a square cross section cylinder in flow perpendicular to its length was investigated experimentally over a Reynolds number (based on cylinder width) range of 6700–43,000. The wake structure and the characteristics of the instability wave, scaling on θ at separation, were strongly dependent on the incidence angle () of the freestream velocity. The nondimensional frequency (Stθ) of the instability wave varied within the range predicted for laminar instability frequencies for flat plate wakes, jets and shear layers. For = 22.5°, the freestream velocity was accelerated over the side walls and the deflection of the streamlines (from both sides of the cylinder) towards the center line was higher compared to the streamlines for = 0°. This caused the vortices from both sides of the cylinder to merge by x/d 2, giving the mean velocity distribution typical of a wake profile. For = 0°, the vortices shed from both sides of the cylinder did not merge until x/d 4.5. The separation boundary layer for all cases was either transitional or turbulent, yet the results showed good qualitative, and for some cases even quantitative, agreement with linearized stability results for small amplitude disturbances waves in laminar separation layers.  相似文献   

10.
Round jets (diameter D) discharging into a confined cross flow (dimension 3.16D × 21.05D) are investigated experimentally. Two configurations are considered: (1) a single jet (momentum flux ratio, J = 155) and (2) two opposed jets with two different momentum flux ratios (J = 60, and 155). A two-component laser-Doppler anemometer is used to make a detailed map of the normal stresses and mean velocities in the symmetry plane of the jets. In addition, smoke-wire and laser-sheet visualization are used to study the flow.

The rate of bending of the single confined jet is found to be higher than the rate of bending of an unconfined jet with the same momentum flux ratio. In the far field, the jet centerline velocity is observed to decay more slowly than the unconfined jet, indicating poor turbulent diffusion of linear momentum. Annular shear layer vortices are visualized on the upstream edge of the jet in the near field. In the far field, the flow visualization suggests that the jet loses its integrity and fragments into independent regions that are convected by the cross flow.

In the opposed jet configuration at the high momentum flux ratio (J = 155), the jets impinge in the center of the duct, and a pair of vortices is observed upstream of the impingement region. The flow visualization implies that the impingement vortices form quasi periodically and have a finite life span. In the impingement region, the jets are observed to penetrate alternately beyond the symmetry plane of the duct. In the two-jet configuration with J = 60, the jets do not impinge on each other owing to the higher rate of bending. Instead, the flow visualization indicates that the shear layers of the jets penetrate to the central region and periodically pinch off regions of the potential-like cross-flow fluid where they meet. The pinch-off regions of cross-flow fluid are convected by the turbulent flow for large distances, yet remain essentially unmixed.  相似文献   


11.
Effect of particle size on a two-phase turbulent jet   总被引:8,自引:0,他引:8  
The effect of particle size on two-phase turbulent jet flow structure is studied in the present experimental investigation. Polystyrene solid particles of 210, 460, and 780 μm were used. The particles' mass loading ratios ranged from 0 to 3.6. The flow Reynolds number was 2 ‘ 104, which was based on the pipe nozzle diameter and the fluid-phase centerline velocity at the nozzle exit. A two-color laser-Doppler anemometer (LDA), combined with the amplitude discrimination method and the velocity filter method, was employed for measurement. The measurement range of the jet flow was from the initial pipe exit to 90D downstream. Results are presented for the mean velocities of particle and fluid phases, the flow's turbulent intensities and the flow's Reynolds stresses. The energy spectra and the correlation functions of the two-phase jet flow were also obtained by using another one-component He-Ne LDA system.  相似文献   

12.
For periodic arrays of spheres the permeability is obtained numerically as a function of the dimensionless wave number kD in the flow direction, where D is the sphere diameter, k = 2π/λ is the wave number, and λ is the distance between the spheres in the flow direction. Our numerical results for the solids fraction of 0.45 show that for kD < 6.5 the permeability increases with increasing kD. But, it decreases for 6.5 < kD < 8.5 and reaches a local minimum at kD  8.5, and then increases again with increasing kD. Since the Fourier spectrum of the area fraction is zero for kD = 8.98, this result suggests that the area fraction plays an important role in determining the dependence of permeability on the distance between the spheres in the flow direction. For smaller solids fractions, the positions of the local maximum and minimum of permeability shift to slightly smaller kD’s.  相似文献   

13.
Experimental measurements of heat transfer are made from the inner peripheral surface of a rotating test rig designed to be similar to a gas turbine high pressure compressor internal air system. The test rig comprises a number of annular discs sealed at their periphery by a shroud. An axial throughflow of cooling air enters the test rig and flows through the annular section between the disc bores and a central shaft. Tests were carried out for the following range of rotational speeds and axial throughflow rates: 540 < NR < 10,800 rev/min and (corresponding to the range of rotational and axial Reynolds numbers 4 × 105 < Re < 7.7 × 106 and 3.3 × 104 < Rez < 2.2 × 105).

The shroud Nusselt numbers are found to depend on the shroud Grashof number. They are relatively insensitive to changes in axial Reynolds number and two geometrically similar cavities give similar values of Nusselt number. The heat transfer from the shroud is governed by the mechanism of free convection. It is recommended that a modified form of a correlation for Rayleigh–Bénard convection in a gravitational force field be used, with appropriate modification, to predict shroud heat transfer.  相似文献   


14.
Experimental study of an impinging jet with different swirl rates   总被引:1,自引:0,他引:1  
A stereo PIV technique using advanced pre- and post-processing algorithms is implemented for the experimental study of the local structure of turbulent swirling impinging jets. The main emphasis of the present work is the analysis of the influence of swirl rate on the flow structure. During measurements, the Reynolds number was 8900, the nozzle-to-plate distance was equal to three nozzle diameters and the swirl rate was varied from 0 to 1.0. For the studied flows, spatial distributions of the mean velocity and statistical moments (including triple moments) of turbulent pulsations were measured.

The influence of the PIV finite spatial resolution on the measured dissipation rate and velocity moments was analyzed and compared with theoretical predictions. For this purpose, a special series of 2D PIV measurements was carried out with vector spacing up to several Kolmogorov lengthscales.

All terms of the axial mean momentum and the turbulent kinetic energy budget equations were obtained for the cross-section located one nozzle diameter from the impinging plate. For the TKE budget, the dissipation term was directly calculated from the instantaneous velocity fields, thereby allowing the pressure diffusion term to be found as a residual one. It was found that the magnitude of pressure diffusion decreased with the growth of the swirl rate. In general, the studied swirling impinging jets had a greater spread rate and a more rapid decay in absolute velocity when compared to the non-swirling jet.  相似文献   


15.
Three dimensional numerical studies were performed for laminar heat transfer and fluid flow characteristics of wavy fin heat exchangers with elliptic/circular tubes by body-fitted coordinates system. The simulation results of circular tube were compared with the experiment data, then circular and elliptic (e = b/a = 0.6) arrangements with the same minimum flow cross-sectional area were compared. A max relative heat transfer gain of up to 30% is observed in the elliptic arrangement, and corresponding friction factor only increased by about 10%. The effects of five factors on wavy fin and elliptic tube heat exchangers were examined: Reynolds number (based on the smaller ellipse axis, 500  4000), eccentricity (b/a, 0.6  1.0), fin pitch (Fp/2b, 0.05  0.4), fin thickness (Ft/2b, 0.006  0.04) and tube spanwise pitch (S1/2b, 1.0  2.0). The results show that with the increasing of Reynolds number and fin thickness, decreasing of the eccentricity and spanwise tube pitch, the heat transfer of the finned tube bank are enhanced with some penalty in pressure drop. There is an optimum fin pitch (Fp/2b = 0.1) for heat transfer, but friction factor always decreases with increase of fin pitch. And when Fp/2b is larger than 0.25, it has little effects on heat transfer and pressure drop. The results were also analyzed from the view point of field synergy principle. It was found that the effects of the five factors on the heat transfer performance can be well described by the field synergy principle.  相似文献   

16.
Measurements in the vicinity of a stagnation point   总被引:1,自引:0,他引:1  
This paper presents measurements of a plane jet impinging onto a normal flat plate placed up to five jet widths from the jet outlet. The small spacing ensured that the stagnation streamline remained in the potential core of the jet. The plate shear stress distribution compared well to that from an analytical solution for the laminar development of the plate boundary layer whose external velocity was determined from the measured pressure. By comparing the shear stress measured under the present low level of free stream turbulence (0.35%) at the jet exit with that of Tu and Wood [Exp. Thermal Fluid Sci. 13 (1996) 364–373] made at about 4%, it is concluded that the turbulence level at the nozzle exit has only a second-order influence on the surface shear stress around the stagnation point. Some spanwise non-uniformity was observed in the plate shear stress, but this was confined largely to the transition region. The mean velocity, Reynolds stresses, and fluctuating pressure were measured along the stagnation streamline using a fast-response pressure probe. A significant increase in the streamwise normal stress and the mean square of the pressure fluctuations occurred before they were eventually attenuated by the plate. This increase occurred in the region where the streamwise velocity was decreasing close to the plate causing extra energy production through the normal stresses. Spectra of the velocity and pressure fluctuations showed that the increase in level was mainly due to the low frequency motion, whereas the subsequent decrease occurred at higher frequencies.  相似文献   

17.
In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using kε and kω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15–65° corner angles are studied. Also the effect of Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the stellar jet is studied. The Numerical results show that the jet entrains more with corner angle 65° and five wings number. The jet is close to a converged state for high Reynolds numbers. Also the influence of the inflow conditions on the jet characteristics is so strong.  相似文献   

18.
An experimental study has been undertaken to investigate the effect of Reynolds number on the near-field region of circular turbulent air jets. Measurements were made using a two-component Laser Doppler Anemometer, and included mean velocity, turbulence intensity, skewness factor, flatness factors and power spectrum. Measurements were taken up to 10 nozzle exit diameter in the downstream direction for different exit Reynolds numbers in the range of 1400 to 20000. The Reynolds number was found to have a strong effect on the jet flow behavior in the near-field region; the centerline velocity decays faster (decay constant = 6.11 for Re = 19400, = 1.35 for Re 1430) and the potential core gets shorter with decreasing Reynolds number. Profile measurements of the skewness and flatness factors indicate that the jet flow becomes more intermittent with decreasing Reynolds number. Power spectrum measurements of the streamwise fluctuating velocities reflects the high energy content of the high Reynolds number jet. It also reveals that there is greater energy at the higher frequencies with increasing Reynolds number.  相似文献   

19.
Flow characteristics of confined, laminar milliscale slot jets are investigated from visualizations, as they impinge upon a flat target plate, with a fully developed velocity profile at the nozzle exit. The effects of Reynolds number Re and normalized nozzle-to-plate distance H/B are considered for a nozzle width B of 1.0 mm. Transition from a stable symmetric jet to an unsteady oscillating jet is observed as the Reynolds number increases (with H/B constant), where the Reynolds number associated with this transition decreases as the normalized nozzle-to-plate distance H/B increases. Instantaneous visualizations show unsteady lateral distortions of jet columns at experimental conditions corresponding to the presence of continuous sinusoidal oscillations, intermittent oscillating motion of the jet column, and jet flow fluctuation/flapping motion. Also apparent in flow visualization sequences are smoke signatures associated with instantaneous vortex structures, which form as secondary flows develop in fluid which, initially, is just adjacent to and within the jet column. Associated jet and vortex structural changes are described as different modes of unsteadiness are present, including characterization of jet column unsteadiness using jet column oscillation frequency, and lateral and streamwise extents of jet distortion.  相似文献   

20.
An experimental study is carried out to investigate flow characteristics of confined twin jets issuing from the lower surface and impinging normally on the upper surface. Pressure distributions on the impingement and confinement plates were obtained for Reynolds numbers ranging from 30,000 to 50,000, nozzle-to-plate spacing (H/D) in the range of 0.5-4 and jet-to-jet spacing (L/D) in the range of 0.5-2. Smoke-wire technique was used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and jet-to-jet spacing on the flow structure are examined. The subatmospheric regions occur on both impingement and confinement plates at the nozzle-to-plate spacing up to 1 for all studied Reynolds numbers and jet-to-jet spacings in consideration. They lie nearly up to the same radial location at both surfaces and move radially outward from the stagnation points with increasing nozzle-to-plate spacing and jet-to-jet spacing. It is concluded that there exists a relation between the subatmospheric regions and peaks in heat transfer coefficients for low spacings in the impinging jets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号