首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct numerical simulation (DNS) of heat transfer in a channel flow obstructed by rectangular prisms has been performed for Reτ = 80–20, where Reτ is based on the friction velocity, the channel half width and the kinematic viscosity. The molecular Prandtl number is set to be 0.71. The flow remains unsteady down to Reτ = 40 owing to the disturbance induced by the prism. For Reτ = 30 and 20, the flow results in a steady laminar flow. In the vicinity of the prism, the three-dimensional complex vortices are generated and heat transfer is enhanced. The Reynolds number effect on the time-averaged vortex structure and the local Nusselt number are investigated. The mechanism of the heat transfer enhancement is discussed. In addition, the mean flow parameters such as the friction factor and the Nusselt number are examined in comparison with existing DNS and experimental data.  相似文献   

2.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


3.
An experimental study of developing and fully developed turbulent air flow in a square duct with two opposite rib-roughened walls in which the ribs are attached in a staggered fashion was conducted to determine the heat transfer characteristics. The rib height-to-hydraulic diameter ratio (e/DH) was 0.19, the rib pitch-to-height ratio (p/e) was 5.31. The streamwise temperature distribution was measured, and a law of the wall for the thermal boundary layer at each free-stream turbulence level was obtained. The effects of free-stream turbulence intensity with variations of 4–11% on heat transfer coefficients were also examined. Finally, the relationship between Nusselt number and Reynolds number was correlated. The results might be used in the design of turbine blade cooling channels.  相似文献   

4.
Instability of two-dimensional periodic flows with rhombic cell structure represented by the stream function Ψ=cos kx+cosy is investigated. Stability characteristics are obtained for the Reynolds number R=1, 2, 3 and 4 and the ratio of the diagonals of the cell . Variation of the critical Reynolds number Rc with k is obtained, and the square cell flow (k=1) is found to be most stable (Rc=√2). It is found that Rc → 1 as k → 0, which leads to a finite gap between this limiting Rc and Rc=√2 for K=0 (Ψ=cos y).  相似文献   

5.
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar–turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Reω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (uk), and decreases to 1.2uk, which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and :β:γ = −5:1:4 in the transition process. In addition to Kelvin–Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow.  相似文献   

6.
Secondary flow patterns, pressure drop and heat transfer in rib-roughened rectangular channels have been investigated. The aspect ratio of the channels is 1–8, and ribs are attached to the wide channel walls in order to set up swirling motions. The geometries tested consist of channels having cross ribs, parallel ribs, cross V-ribs, parallel V-ribs, and multiple V-ribs (Swirl Flow Tube). The flow patterns were investigated using smoke wire visualization and LDV measurements. The smoke wire experiments have been performed at Re=1100 and the LDV measurements at Re=3000 at periodic fully developed conditions. The heat transfer and pressure drop are described by j and f factors for Reynolds numbers from 500 to 15 000. The distributions of axial mean velocity and turbulent fluctuations are strongly influenced by the secondary flows. Large mean velocities and small fluctuations are found in regions where the secondary flow is directed towards a surface, while small mean velocities and large fluctuations are found in regions where the secondary flow is directed away from a surface. The Swirl Flow Tube provides a significant increase in the j factor at Reynolds numbers from 1000 to 2000, but unfortunately also an increase in the f factor. At higher Reynolds numbers, the j and f factors of the Swirl Flow Tube are of the same order of magnitude as for the other rib-roughened channels. It is found that the flow direction in a channel with parallel V-ribs has important influence on the j/f ratio. At Reynolds numbers above 4000, this channel provides the highest j/f ratio if the V-ribs are pointing upstream; while it provides the lowest j/f ratio of all rib configurations, if the V-ribs are pointing downstream.  相似文献   

7.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


8.
Laser-Doppler velocimeter measurements of a wing/body junction flow field made within a plane to the side of the wing/wall junction and perpendicular both to a 3:2 elliptical nose—NACA 0020 tail wing, and a flat wall are presented. Reynolds number of the approach boundary layer was, Reθ = 5940, and free-stream air velocity was, Uref = 27.5 m/s. A large vortical structure residing in the outer region redirects the low-turbulence free-stream flow to the vicinity of the wing/wall junction, resulting in thin boundary layers with velocity magnitudes higher than free-stream flow. Lateral pressure gradients result in a three-dimensional separation on the uplifting side of the vortex. Additionally, a high vorticity vortical structure with opposite sense to the outer-layer vortex forms beneath the outer-layer vortex. Normal and shear stresses increase to attain values an order of magnitude larger compared to values measured in a three-dimensional boundary layer just outside the junction vortex. Bimodal histograms of the w fluctuating velocity occur under the outer-layer vortex near the wall due to the time-dependent nature of the horseshoe vortex. In such a flow the shear-stress angle (SSA) highly lags the flow-gradient angle (FGA), and the turbulence diffusion is highly altered due to presence of vortical structures.  相似文献   

9.
We report on large-eddy simulations of flow over a heated, jet-impinged, wall-mounted cube in a cross-flow, representing a simplified case of electronics cooling. The configuration consists of an in-line array of five cubes mounted on the bottom wall of a plane channel. The central heated cube is cooled by two mutually perpendicular streams of air: a channel flow at Rec = 4800 and a round impinging jet Rej = 5200 issued from an orifice in the opposite upper channel wall. The study was aimed at investigating flow structures and turbulence statistics, as well as their thermal signature and heat transfer on the cube surface. The comparison with measurement in a similar, though not identical, configuration shows qualitatively good agreement despite some important differences in flow conditions. The paper outlines the method applied and presents a selection of results.  相似文献   

10.
Experimental measurements of heat transfer are made from the inner peripheral surface of a rotating test rig designed to be similar to a gas turbine high pressure compressor internal air system. The test rig comprises a number of annular discs sealed at their periphery by a shroud. An axial throughflow of cooling air enters the test rig and flows through the annular section between the disc bores and a central shaft. Tests were carried out for the following range of rotational speeds and axial throughflow rates: 540 < NR < 10,800 rev/min and (corresponding to the range of rotational and axial Reynolds numbers 4 × 105 < Re < 7.7 × 106 and 3.3 × 104 < Rez < 2.2 × 105).

The shroud Nusselt numbers are found to depend on the shroud Grashof number. They are relatively insensitive to changes in axial Reynolds number and two geometrically similar cavities give similar values of Nusselt number. The heat transfer from the shroud is governed by the mechanism of free convection. It is recommended that a modified form of a correlation for Rayleigh–Bénard convection in a gravitational force field be used, with appropriate modification, to predict shroud heat transfer.  相似文献   


11.
12.
The turbulent flow structure and vortex dynamics of a jet-in-a-crossflow (JICF) problem, which is related to gas turbine blade film cooling, is investigated using the particle-image velocimetry (PIV) technique. A cooling jet emanating from a pipe interacts with a turbulent flat plate boundary layer at a Reynolds number Re = 400,000. The streamwise inclination of the coolant jet is 30° and two velocity ratios (VR = 0.28, VR = 0.48) and two mass flux ratios (MR = 0.28, MR = 0.48) are considered. Jets of air and CO2 are injected separately into a boundary layer to examine the effects of the density ratio between coolant and mainstream on the mixing behavior and consequently, the cooling efficiency. The results show a higher mass flux ratio to enlarge the size of the recirculation region leading to a more pronounced entrainment of hot outer fluid into the wake of the jet. Furthermore, the lateral spreading of the coolant is strongly increased at a higher density ratio. The results of the experimental measurements are used to validate numerical findings. This comparison shows an excellent agreement for mean velocity and higher moment velocity distributions.  相似文献   

13.
The hole diameter effect on the flow characteristics of wake behind porous fences has been investigated experimentally in a circulating water channel having a test section of 300w×200h×1200l (mm). Three porous fences having different hole diameters of d=1.4,2.1,2.8 mm were tested in this study, but they have the same =38.5% geometric porosity. One thousand instantaneous velocity fields for each fence were measured consecutively by the hybrid PTV system employing a high-speed CCD camera. Free stream velocity was fixed at 10 cm/sec and the corresponding Reynolds number based on the fence height was Re=2,985. Consequently, the fence with the smallest hole diameter d=1.4 mm (d1.4) decreases the streamwise velocity component and increases the vertical velocity component. Among the three hole diameters tested in this study, the d1.4 fence has the largest turbulence intensity in the shear layer developed from the fence top. Regardless of the hole diameter, however, all three fences having the same porosity reduce the reduction of turbulent intensity in the lower region below the fence height (y/H<1).  相似文献   

14.
The wake structure of discs and bluff rings has been investigated experimentally in a wind tunnel. The rings have an inner diameter di, and an outer diameter do and are classified according to the parameter (do + di)/(dodi) = d/w. the ratio of mean diameter to ring width. As d/w → ∞ the flow approaches that around a two dimensional bluff body whereas as d/w tends to unity the body approaches a solid disc. A distinct change in the vortex shedding pattern is found around d/w = 5. Below this critical value velocity fluctuations in the wake have a weak periodic component which is 180° out of phase across a diameter of the body. Above d/w = 5. regular and coherent axisymmetric vortex ring shedding is observed with shedding occurring alternately from the inner and outer circumferences of the bluff body. Flow visualization and conditional averaging of hot-wire data are used to investigate the vortex structure.  相似文献   

15.
This paper describes receptivity measurements in a pre-transitional boundary layer flowing over either a rigid or a compliant surface. Fluctuating velocities and frequency spectra were determined on one rigid and nine compliant surfaces. The results showed that the near wall receptivity grows linearly with Reθ. An empirical correlation of the gain frequency spectrum for a rigid wall was also established. For the compliant surfaces, the near wall gain is increased markedly near the leading edge of the plate due to the amplification of high and mid-frequencies. These frequencies are dissipated though as the flow progresses over the compliant surface such that the receptivity is lower on all the compliant surfaces than on the rigid surface at the trailing edge. An empirical correlation for the ratio of the gains on compliant and rigid surfaces in terms of the compliant surface coefficient ζ2/CSL2 and Reθ was established. This correlation indicates that compliant surfaces can suppress receptivity by up to 25% for a Reθ = 400.  相似文献   

16.
An immersed-boundary method was employed to perform a direct numerical simulation (DNS) of flow around a wall-mounted cube in a fully developed turbulent channel for a Reynolds number Re = 5610, based on the bulk velocity and the channel height. Instantaneous results of the DNS of a plain channel flow were used as a fully developed inflow condition for the main channel. The results confirm the unsteadiness of the considered flow caused by the unstable interaction of a horseshoe vortex formed in front of the cube and on both its sides with an arch-type vortex behind the cube. The time-averaged data of the turbulence mean-square intensities, Reynolds shear stresses, kinetic energy and dissipation rate are presented. The negative turbulence production is predicted in the region in front of the cube where the main horseshoe vortex originates.  相似文献   

17.
Computation of a turbulent dilute gas–solid channel flow has been undertaken to study the influence of using wall-corrected drag coefficients and of the lift force on the dispersed phase characteristics. The incompressible Navier–Stokes equations governing the carrier flow were solved by using a direct numerical simulation approach and coupled with a Lagrangian particle tracking. Calculations were performed at Reynolds number based on the wall-shear velocity and channel half-width, Reτ ≈ 184, and for three different sets of solid particles. For each particle set, two cases were examined, in the first one the particle motion was governed by both drag and lift wall-corrected forces, whereas in the other one, the standard drag force (not corrected) was solely acting. The lift force model used represents the most accurate available expression since it accounts for weak and strong shear as well as for wall effects. For this study, we considered elastic collisions for particles contacting the walls and that no external forces were acting. Present results indicate that the use of the lift force and of the drag corrections does not lead to significant changes in the statistical properties of the solid phase, at the exception of some statistics for the high inertia particles.  相似文献   

18.
The effect of the Reynolds number on vortical structures in a turbulent far-wake has been investigated for Red (based on the free stream velocity and the cylinder diameter) =2800 and 9750. Velocity data were obtained using two orthogonal arrays of 16 X-wires, eight in the (x,y)-plane and eight in the (x,z)-plane. Structures were detected in both planes using a technique based on vorticity concentration and circulation. Conditional streamlines and contours of vorticity based on spanwise structures, i.e. detections in the (x,y)-plane, reveal that the streamwise size of spanwise structures increases as Red increases. The interrelationship is investigated between detections simultaneously identified in the two planes. Transverse structures, i.e. detections in the (x,z)-plane, correspond, with a relatively high probability, to spanwise structures, in conformity with a distortion in the (y,z)-plane of spanwise structures. Those that correspond, with relatively high probability, to the saddle between consecutive spanwise structures are interpreted in terms of ribs, whose signatures are detectable in instantaneous data. The probability is also high for transverse structures to occur between the focus of a spanwise structure and its associated saddle when Red=9750, but not when Red=2800. This is consistent with an increased vortex pairing frequency at the higher Red, as observed in instantaneous sectional streamlines.  相似文献   

19.
A numerical study is made of flow and heat transfer characteristics of forced convection in a channel that is partially filled with a porous medium. The flow geometry models convective cooling process in a printed circuit board system with a porous insert.The channel walls are assumed to be adiabatic. Comprehensive numerical solutions are acquired to the governing Navier-Stokes equations, using the Brinkman-Forchheimer-extended Darcy model for the regions of porous media. Details of flow and thermal fields are examined over ranges of the principal parameters; i.e., the Reynolds number Re, the Darcy number Da (≡K/H2), the thickness of the porous substrate S, and the ratio of thermal conductivities Rk (≡keff/k). Two types of the location of the porous block are considered. The maximum temperature at the heat source and the associated pressure drop are presented for varying Re, Da, S, and Rk. The results illustrate that as S increases or Da decreases, the fluid flow rate increases. Also, as Rk increases for fixed Da, heat transfer rates are augmented. Explicit influences of Re on the flow and heat transport characteristics are also scrutinized. Assessment is made of the utility of using a porous insert by cross comparing the gain in heat transport against the increase in pressure drop.  相似文献   

20.
A two-dimensional oscillating flow analysis was conducted simulating the gas flow inside Stirling engine heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Remax = 1,920 (Va = 80), 10,800 (Va = 272), 19,300 (Va = 272), and 60,800 (Va = 126). The results are here compared with experimental results of previous investigators. Predictions of the flow regime on present oscillating flow conditions are also checked by comparing velocity amplitudes and phase difference with those from laminar theory and quasi-steady profile. A high Reynolds number k-ε turbulence model was used for turbulent oscillating pipe flow. Finally, the performance of the k-ε model was evaluated to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号