首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
 Velocity statistics along the stagnation line of an axi-symmetric wall stagnating turbulent flow are studied experimentally. A low turbulence, uniform air flow from a nozzle type air supply with an exit diameter of 50 mm stagnates at a wall located 50 mm downstream. A flow velocity is set to 3 m/s, 10 mm downstream from the exit of the air supply. Instantaneous values of streamwise and radial velocities are measured by laser-Doppler velocimetry. The turbulence level in the air flow is changed by use of turbulence generator. When the turbulence generator is not installed in the air supply, the mean velocity profile in the streamwise direction fits well with that of a laminar viscous flow with the rms value of velocity fluctuations low near the wall. With the turbulence generator installed, a significant turbulence structure appears near the wall. When the wall is approached, the rms value of velocity fluctuations in the streamwise direction decreases monotonically while the profile of the rms value in the radial direction reaches a maximum near the wall. The increase in the rms value of velocity fluctuations in the radial direction near the wall is attributed to the bi-modal histogram of the fluctuating velocity in the radial direction. Near the wall, the instantaneous stagnation streamline fluctuates and the probability of the mean location of the stagnation point reaches a maximum not at the stagnation line but on a circle around the stagnation line, resulting in the bi-modal histogram. Turbulence statistics, the rms value of velocity fluctuation and the turbulent kinetic energy, can be normalized successfully by similarity parameters based on the strain rate and the reference turbulent kinetic energy introduced by Champion and Libby. Received: 7 April 1995/Accepted: 27 September 1996  相似文献   

2.
An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.  相似文献   

3.
The results of measurements of all three components of the mean velocity vector, the Reynolds normal and primary shear stresses and the mean static pressure in a turbulent free jet, issuing from a sharp-edged cruciform orifice, are presented in this paper. The measurements were made with an x-array hot-wire probe and a pitot-static tube in the near flow field of the jet. The Reynolds number, based upon the equivalent diameter of the orifice, was 1.70 × 105. In addition to the quantities measured directly, the mean streamwise centreline velocity decay, the jet half-velocity widths, the jet spreading rate, the mean streamwise vorticity, the mass entrainment rate, the integral momentum flux and the one-dimensional energy spectra have been derived from the measured data. The results show that the mean streamwise centreline velocity decay rate of the cruciform jet is higher than that of a round jet issuing from an orifice with the same exit area as that of the cruciform orifice. The mean streamwise velocity field changed shape continuously from a cruciform close to the orifice exit plane to circular at 12 and half equivalent diameters downstream. The mean streamwise vorticity field, up to about three equivalent diameters downstream of the orifice exit plane, consists of four pairs of counter-rotating cells, which are aligned with the four edges in the centre of the cruciform orifice.  相似文献   

4.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

5.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

6.
This paper presents a comprehensive comparison of the mean velocity and turbulence measurements from a four-hole pressure probe, also known as the Cobra probe, and an X-probe in plane mixing layers. The objective is to validate the measurement accuracy of the Cobra probe in a flow where the turbulence reaches high levels, but whose properties are well known. The comparison is made for the mean velocities, Reynolds stresses, triple products, and spectra, and demonstrates that the Cobra probe has reasonable accuracy for some of these quantities, such as the mean streamwise velocity and primary shear stress, but not for others, such as the mean normal velocity. The correlation of the pressure and the streamwise velocity, measured by the Cobra probe, behaves correctly in the potential flow. However, the correlation of the pressure and the cross-stream velocity, which appears in the transport equation for the turbulent kinetic energy, and the pressure redistribution term in the corresponding equation for the streamwise normal stress, are poorly measured.  相似文献   

7.
Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.  相似文献   

8.
Experiments are carried out in order to investigate the flow structure past a rectangular, triangular and semi-circular cavity of length-to-depth ratio of 2:1 using the Particle Image Velocimetry (PIV) technique. The experiments are performed in a large scale water channel with three different upstream velocities resulting in Reynolds numbers of 1230, 1460 and 1700, based on inflow momentum thickness, for each cavity type. Contours of constant averaged streamwise and transverse components of velocity, contours of constant averaged vorticity, Reynolds stress and streamline plots for each cavity type for the aforementioned three Reynolds numbers are presented. In addition, streamwise velocity, Reynolds stress and turbulence intensity values are compared for all cavity types. Effect of cavity shape on flow structure within the cavity is discussed in detail. Moreover, spectrum of instantaneous streamwise velocity fluctuations in shear layer near the downstream of the leading corner and the upstream of the trailing corner of the cavities are obtained and it was found that no organized oscillations are present in the flow; rectangular and triangular cavities have the largest amplitudes while semi-circular cavity has the smallest. Calculated turbulence intensities also reveal that the maximum turbulence intensities occur at cavity lid in the centerline section and rectangular and triangular cavities have larger turbulence intensity compared to semi-circular cavity.  相似文献   

9.
It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters throughout the flow, causing fewer vortices to be generated under the control. However, when the structural spacing is sufficiently large, the generation of new vortex is not suppressed over the no-control surface in the near-wall region, resulting in an increase of the second- and fourth-quadrant Reynolds shear stresses. Although strong actuating velocity intensifies the near-wall turbulence, the increase in the turbulence activity is attributed to the generation of counter-clockwise near-wall vortices by the increased vortex transport.  相似文献   

10.
Experimental study of flow past a square cylinder at high Reynolds numbers   总被引:4,自引:0,他引:4  
 Measurements of two-components of velocity in the wake of a square cylinder using a hot-wire anemometer are reported. Two Reynolds numbers, namely 8700 and 17,625, have been considered. The measurements were carried out in a low-speed, low-turbulence wind tunnel. Benchmark experiments at much lower Reynolds numbers show good agreement between the present experiments and published results. At higher Reynolds numbers, the experimental data reveal anticipated trends in terms of wake recovery and turbulence decay. Both velocity and velocity fluctuations show symmetry about the wake axis. The experimental data have been compared with the large eddy simulation (LES) calculation reported by Wang et al. [University of Illinois at Urbana – Champaign (1996) Report CFD 96-03] and LDV measurements of Lyn et al. [J Fluid Mech (1995) 304: 285–319]. The agreement among the three sets is generally acceptable in terms of the time-averaged velocity components, but not the velocity fluctuations. The turbulence fluctuations in the present experiments are seen to be lower than in the referred work. The differences have been traced to factors such as the aspect ratio, blockage ratio and upstream turbulence. Experiments with increased upstream turbulence did show a reduction in the discrepancy between the present experiments and the published data. An assessment of the experimental data in terms of physical mechanisms revealed that (a) streamwise normal stresses were correlated with the vortex centers, and (b) the turbulence kinetic energy profiles are similar to the turbulence shear stress. Spectral analysis of the velocity signals was carried out in the present work. Energy transfer from the mean flow to the streamwise velocity fluctuation was confirmed in the near wake. A redistribution of the kinetic energy between the streamwise and transverse components of velocity over a longer distance downstream was subsequently observed. Received: 17 May 1999/Accepted: 29 December 1999  相似文献   

11.
Measurements of the mean velocity and turbulence intensity are presented for a rectangular jet of water ejecting into a gaseous ambient. Data are reported for streamwise locations up to 30 nozzle widths from the discharge and spanwise locations covering the inner 80% of the jet width. The flow conditions at the nozzle discharge were controlled by using different nozzle designs (parallel-plate and converging) and flow manipulators (wire grid and screens). The results track the mean velocity and turbulence intensity profiles with streamwise distance, highlighting changes in both the profile shapes and magnitudes for both measured quantities. Independent of nozzle configuration, the mean velocity profile was shown to be most nonuniform and the turbulence intensity most nonhomogeneous at the nozzle discharge. With increasing streamwise distance, the mean velocity profile underwent a gradual transition to a completely uniform condition, while the turbulence field decayed and became homogeneous. The rate of viscous dissipation was shown to depend strongly on the nozzle exit condition. This work was supported by the National Science Foundation under grant numbers CTS-8912831 and CTS-9307232  相似文献   

12.
The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR‐PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers.  相似文献   

13.
While large-scale motions are most energetic in the logarithmic region of a high-Reynolds-number turbulent boundary layer, they also have an influence in the inner-region. In this paper we describe an experimental investigation of manipulating the large-scale motions and reveal how this affects the turbulence and skin-friction drag. A boundary layer with a friction Reynolds number of 14 400 is controlled using a spanwise array of nine wall-normal jets operated in an on/off mode and with an exit velocity that causes the jets in cross-flow to penetrate within the log-region. Each jet is triggered in real-time with an active controller, driven by a time-resolved footprint of the large-scale motions acquired upstream. Nominally, the controller injects air into large-scale zones with positive streamwise velocity fluctuations; these zones are associated with positive wall-shear stress fluctuations. This control scheme reduced the streamwise turbulence intensity in the log-region up to a downstream distance of more than five times the boundary layer thickness, δ, from the point of actuation. The highest reduction in spectral energy—more than 30%—was found for wavelengths larger than 5δ in the log-region at 1.7δ downstream of actuation, while scales larger than 2δ still comprised more than 15% energy reduction in the near-wall region. In addition, a 3.2% reduction in mean skin-friction drag was achieved at 1.7δ downstream of actuation. Our reductions of the streamwise turbulence intensity and mean skin-friction drag exceed a base line control-case, for which the jet actuators were operated with the same temporal pattern, but not synchronised with the incoming large-scale zones of positive fluctuating velocity.  相似文献   

14.
A neural network has been used to predict stagnation region heat transfer in the presence of freestream turbulence. The neural network was trained using data from an experimental study to investigate the influence of freestream turbulence on stagnation region heat transfer. The integral length scale, Reynolds number, all three components of velocity fluctuations and the vorticity field were used to characterize the freestream turbulence. The neural network is able to predict 50% of the test data within ±1%, while the maximum error of any data point is under 3%. A sensitivity analysis of the freestream turbulence parameters on stagnation region heat transfer was performed using the trained neural network. The integral length scale is found to have the least influence on the stagnation line heat transfer, while the normal and spanwise turbulence intensities have the highest influence.  相似文献   

15.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

16.
An experimental study of a two-dimensional plane turbulent wall jet   总被引:1,自引:0,他引:1  
 Laser-Doppler measurements were conducted in a plane turbulent wall jet at a Reynolds number based on inlet velocity, Re 0, of 9600. The initial development as well as the fully developed flow was studied. Special attention was given to the near-wall region, including the use of small measuring volumes and the application of specific near-wall data corrections, so that wall shear stresses were determined directly from the mean velocity gradient at the wall using only data below y +=4. It was possible to resolve the inner peak in the streamwise turbulence intensity as well as the inner (negative) peak in the shear stress. Limiting values of (u′)+ and uv + were determined. Turbulence data from the outer region of the flow were compared to earlier hot wire measurements and large differences in the normal turbulence intensity and the shear stress were found. These differences can be attributed to high turbulence intensity effects on the hot-wires. Received: 17 October 1996 / Accepted: 8 December 1997  相似文献   

17.
《力学快报》2021,11(4):100279
The immersed boundary method has been widely used for simulating flows over complex geometries.However, its accuracy in predicting the statistics of near-wall turbulence has not been fully tested. In this work, we evaluate the capability of the curvilinear immersed boundary(CURVIB) method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows. Simulation results show that quantities including the time-averaged streamwise velocity, the rms(root-mean-square) of velocity fluctuations, the rms of vorticity fluctuations, the shear stresses, and the correlation coefficients of u and v computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations. More importantly, it is found that the time-averaged pressure, the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results.  相似文献   

18.
We examined the flow behaviors and mixing characteristics of double-concentric jets using laser-assisted smoke flow visualization method to analyze typical flow patterns and binary boundary detection technique to investigate jet spread width. Time-averaged velocity vectors, streamline patterns, velocity distributions, turbulence properties, and vorticity contours were analyzed using Particle Image Velocimetry (PIV). Topological flow patterns were analyzed to interpret the vortical flow structures. Mixing properties were investigated using a tracer-gas concentration detection method. Four characteristic modes were observed: annular flow dominated mode, transition mode, central jet dominated mode-low shear, and central jet dominated mode-high shear. The jets’ mixing properties were enhanced by two major phenomena: the merging of annular flow and central jet at the centerline and the large turbulence fluctuations produced in the flow field. The merging of the jets induced stagnation points on the central axis in the annular flow dominated mode, which caused reverse flow on the central axis and drastic turbulence fluctuations of the near field region. When the central jet penetrated the recirculation region in the other three modes, the stagnation points on the central axis and the reverse flow vanished. Therefore, the mixing behaviors were prominently enhanced in the annular flow dominated mode.  相似文献   

19.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
An experimental investigation has been completed to study several methods of avoiding the jet screech phenomenon due to air jet impingement on solid boundaries. Measurements were completed in the Mach number region of M=0.5 using a 25 mm diameter nozzle with the air jet impinging on flat, concave and convex boundaries. Sound pressure levels were recorded in the plane of the nozzle outlet at a distance of 1.46 m from the jet axis. Hot wire studies and the stagnation pressure at the impingement zone of the jet were also recorded.With the air jet impinging on the flat board normal to its surface a maximum sound pressure occurred at a spacing of approximately two nozzle diameters producing a distinct screech at a sound level of 20 dB above that of the free jet. Three methods of preventing this screech were studied. First, by inserting disturbances into the shear layer at the nozzle exit; second, by changing the geometry of the boundary shape to improve the jet stability in the impingement region; and third, by introducing disturbances at the stagnation region which had the effect of displacing the distinct screech to another frequency range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号