首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper discusses experimental results from a multiple cavity test rig representative of a high pressure compressor internal air system. Measurements of the axial, tangential and radial velocity components are presented. These were made using a two component, laser doppler anemometry (LDA) system for a range of non-dimensional parameters representative of engine conditions (Re up to 4 × 106 and Rez up to 1.8 × 105). Tests were carried out for two different sizes of annular gap between the (non-rotating) drive shaft and the disc bores.

The axial and radial velocities inside the cavities are virtually zero. The size of the annular gap between disc bore and shaft has a significant effect on the radial distribution of tangential velocity. For the narrow annular gap (dh/b = 0.092), there is an increase of non-dimensional tangential velocity V/Ωr with radial location from V/Ωr < 1 at the lower radii to solid body rotation V/Ωr = 1 further into the cavity. For the wider annular gap (dh/b = 0.164), there is a decrease from V/Ωr > 1 at the lower radii to solid body rotation further into the cavity. An analysis of the frequency spectrum obtained from the tangential velocity measurements is consistent with a flow structure in the r plane consisting of pairs of contra rotating vortices.  相似文献   


2.
Spirally fluted tubes are used extensively in the design of tubular heat exchangers. In previous investigations, results for tubes with flute depths e/Dvi < 0.2 were reported, with most correlations applicable for Re ≥ 5000. This paper presents the results of an experimental investigation of the heat transfer and pressure drop characteristics of spirally fluted tubes with the following tube and flow parameter ranges: flute depth e/Dvi = 0.1−0.4, flute pitch p/Dvi = 0.4−7.3, helix angle θ/90° = 0.3−0.65, Re = 500−80,000, and Pr = 2−7. The heat transfer coefficients inside the fluted tube were obtained from measured values of the overall heat transfer coefficient using a nonlinear regression scheme. The friction factor data obtained consisted of 507 data points. The proposed correlation for the friction factor predicts 96% of the database within ±20%. The heat transfer correlation for the range 500 ≤ Re ≤ 5000 predicts 76% of the database (178 data points) within ±20%, and the correlation for the higher Re range predicts 97% of the 342 data points within ±20%. Comparison of heat transfer and friction data show that these tubes are most effective in the laminar and transition flow regimes. The present results show that the increase of flute depth in the range considered does not improve heat transfer.  相似文献   

3.
In the present study, the effects of fin thickness on the heat transfer and friction characteristics of fin-and-tube heat exchangers having herringbone wavy fin configuration are experimentally investigated. The experimental apparatus consists essentially of a well insulated open wind tunnel and herringbone wavy fin-and-tube heat exchangers made from aluminium plate finned, copper tube. Air and water are used to be working fluids in air-side and tube-side, respectively. A total of 10 samples of the fin-and-tube heat exchangers are tested. The experimental procedures are conducted by keeping the inlet water temperature at a pre-selected value, adjusting the water volumetric flow rate at a specific value and varying the air velocity. The results are presented as plots of the Colburn factor and friction factor against the Reynolds number based on the fin collar outside diameter (ReDc). From the results, it is found that for number of tube rows (N) = 2, the Colburn factor increases with increasing fin thickness. For N 4, the Colburn factor decreases with increasing fin thickness when ReDc < 1800, and increases with increasing fin thickness when ReDc > 2500. The friction factor increases with increasing fin thickness when fin pitch (Fp) 1.81 mm.  相似文献   

4.
In the present study, new experimental data on the air-side performance of fin-and-tube heat exchangers having herringbone wavy fin configuration are presented. Different from most previous studies, the present experiments have been performed to determine the effects of fin patterns and edge corrugations on the air-side performance of the heat exchangers. The experimental apparatus consists essentially of a well-insulated open wind tunnel and herringbone wavy fin-and-tube heat exchangers made from aluminium wavy finned, copper tube. Two types of wavy fin patterns commonly in industrial use are investigated. Air and hot water are used as working fluids in air-side and tube-side, respectively. From the experimental results, it is found that the fin pattern has a significant effect on the heat transfer and flow characteristics. The corrugation at the fin edge enables the Colburn factor to decrease but it has almost no effect on the friction factor.  相似文献   

5.
Turbulent pressure drop and heat transfer characteristics in tubes with three different kinds of internally longitudinal fin patterns (interrupted wavy, sinusoidal wavy and plain) are numerically investigated for Re = 904–4,520. The channel velocity, temperature, and turbulence fields are obtained to discern the mechanisms of heat transfer enhancement. Numerical results indicate that the steady and spatially periodic growth and disruption of cross-sectional vortices occur near the tube/fin walls along the streamwise locations. The thermal boundary layers near the tube/fin surfaces are thereby periodically interrupted, with heat transfer near the recirculation zones being enhanced. The overall heat transfer coefficients in wavy channels are higher than those in a plain fin channel, while with larger pressure drop penalties. At the same waviness, the interrupted wavy fin tube could enhance heat transfer by 72–90%, with more than 2–4 times of pressure drop penalty. Among the fins studied, the sinusoidal wavy fin has the best comprehensive performance.  相似文献   

6.
The heat transfer and friction characteristics of the heat exchangers having sinusoidal wave fins were experimentally investigated. Twenty-nine samples having different waffle heights (1.5 and 2.0 mm), fin pitches (1.3–1.7 mm) and tube rows (1–3) were tested. Focus was given to the effect of waffle configuration (herringbone or sinusoidal) on the heat transfer and friction characteristics. Results show that the sinusoidal wave geometry provides higher heat transfer coefficients and friction factors than the herringbone wave geometry, and the difference increases as the number of row increases. The j/f ratios of the herringbone wave geometry, however, are larger than those of the sinusoidal wave geometry. Compared with the herringbone wave geometry, the sinusoidal wave geometry yielded a weak row effect, which suggests a superior heat transfer performance at the fully developed flow region for the sinusoidal wave geometry. Possible reasoning is provided considering the flow characteristics in wavy channels. Within the present geometric variations, the effect of waffle height on the heat transfer coefficient was not prominent. The effect of fin pitch was also negligible. Existing correlations highly overpredicted both the heat transfer coefficients and friction factors. A new correlation was developed based on the present data.  相似文献   

7.
The effect of the Reynolds number on vortical structures in a turbulent far-wake has been investigated for Red (based on the free stream velocity and the cylinder diameter) =2800 and 9750. Velocity data were obtained using two orthogonal arrays of 16 X-wires, eight in the (x,y)-plane and eight in the (x,z)-plane. Structures were detected in both planes using a technique based on vorticity concentration and circulation. Conditional streamlines and contours of vorticity based on spanwise structures, i.e. detections in the (x,y)-plane, reveal that the streamwise size of spanwise structures increases as Red increases. The interrelationship is investigated between detections simultaneously identified in the two planes. Transverse structures, i.e. detections in the (x,z)-plane, correspond, with a relatively high probability, to spanwise structures, in conformity with a distortion in the (y,z)-plane of spanwise structures. Those that correspond, with relatively high probability, to the saddle between consecutive spanwise structures are interpreted in terms of ribs, whose signatures are detectable in instantaneous data. The probability is also high for transverse structures to occur between the focus of a spanwise structure and its associated saddle when Red=9750, but not when Red=2800. This is consistent with an increased vortex pairing frequency at the higher Red, as observed in instantaneous sectional streamlines.  相似文献   

8.
The thermal contact resistance is a principal parameter interfering with heat transfer in a fin–tube heat exchanger. However, the thermal contact resistance in the interface between tubes and fins has not been clearly investigated. The objective of the present study is to examine the thermal contact conductance for various fin–tube heat exchangers with tube diameter of 9.52 mm and to find a correlation between the thermal contact conductance and effective factors such as expansion ratio, fin type, fin spacing and hydrophilic coating. In this study, experiments have been conducted only to measure heat transfer rate between hot and cold water. To minimize heat loss to the ambient air by the natural convection fin–tube heat exchangers have been placed in an insulated vacuum chamber. Also, a numerical scheme has been employed to calculate the thermal contact conductance with the experimental data. As a result, a new correlation including the influences of expansion ratio, slit of fin and fin coating has been introduced, and the portion of each thermal resistance has been estimated in the fin–tube heat exchangers with 9.52 mm tube.  相似文献   

9.
The effect of the aspect ratio on natural convection in water subjected to density inversion has been investigated in this study. Numerical simulations of the two-dimensional, steady state, incompressible flow in a rectangular enclosure with a variety of aspect ratios, ranging from 0.125 to 100, have been accomplished using a finite element model. Computations cover Rayleigh numbers from 103 to 106. Results reveal that the aspect ratio, A, the Rayleigh number, Ra, and the density distribution parameter, R, are the key parameters to determine the heat transfer and fluid flow characteristics for density inversion fluids in an enclosure. A new correlation for predicting the maximum mean Nusselt number is proposed in the form of , with the constants a and b depending on density distribution number R. It is demonstrated that the aspect ratio has a strong impact on flow patterns and temperature distributions in rectangular enclosures. The stream function ratio Ψinv/|Ψreg| is introduced to describe quantitatively the interaction between inversional and regular convection. For R=0.33, the density inversion enhancement is observed in the regime near A=3.  相似文献   

10.
A new program for simulation and optimization of the shell-and-tube heat exchangers is prepared to obtain useful results by employment of the computing technology fast and accurately. As an application of this program, the effects of transverse and longitudinal tube pitch in the in-line and staggered tube arrangements on the Nusselt numbers, heat transfer coefficients and thermal performance of the heat exchangers were investigated. The obtained values of the tube pitch were compared with literature values.  相似文献   

11.
Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method.  相似文献   

12.
To reduce the size and the weight of heat exchangers, vortex generators (VGs) were punched on fin surface to improve the fin heat transfer performance. This paper is focused on the optimal fin spacing for three-row flat tube bank fin mounted with VGs. The results show, for commonly used fin materials and fin thickness, the optimal fin spacing is about 2 mm in industrial application for the configuration of tube bank fin studied.  相似文献   

13.
The results obtained from naphthalene sublimation heat/mass analogy experiments in selecting the optimum geometrical parameters of tube bank fin heat exchanger with fins mounted with vortex generators are compared with the results obtained from the condensing experiments of the real heat exchangers with vortex generators punched out on the fins. The results declare that VGs pouched or mounted on fin surfaces have only limited effects on heat transfer performance in the studied configurations; naphthalene sublimation method can be used to select fin patterns with reasonable reliability.  相似文献   

14.
In previous publications, three isentropic exponents, kpv, kTv, kpT, have been introduced, which when used in place of the classical isentropic exponent k = cp/cv in the ideal gas isentropic change equations, the latter can describe very accurately the isentropic change of real gases. The present work provides a general method for determining the values of kpv, kTv, kpT within the ranges of reduced pressure pr = 0 to 10 and of reduced temperature Tr = 1 to 3.5, thus allowing the calculation of the isentropic flow of those real gases for which no detailed thermodynamic data are available. The accuracy obtained is limited only by the accuracy of the generalized Lee-Kesler equation of state, which is employed in the method developed.  相似文献   

15.
The heat transfer and pressure drop characteristics of heat exchangers having louver fins were experimentally investigated. The samples had small fin pitches (1.0–1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). Below a certain Reynolds number (critical Reynolds number), the fall-off of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L p /F p ) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. The heat transfer coefficient curves crossed over as the Reynolds number decreased. Possible explanation is provided considering the louver pattern between neighboring rows. Different from the heat transfer coefficient, the friction factor did not show the fall-off characteristic. The reason was attributed to the form drag by louvers, which offsets the decreased skin friction at low Reynolds numbers. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 94% of the friction factor within ±10%.  相似文献   

16.
Tube bank fin heat exchanger is one of the most compact heat exchangers, and it is widely used in industry equipments. The flat tube bank fin heat exchangers with vortex generators (VGs) have significant good heat transfer performance, and are used as radiators of locomotive. Here, we study heat transfer enhancement of a new fin where VGs are mounted on both surfaces of the fin. The heat transfer performance of this pattern is evaluated by a numerical method, and the results are compared with those obtained, under identical mass flow rate, when the VGs are mounted only on one surface of the fin. The results reveal that using this new pattern the height of VGs can be reduced and still obtain satisfactory heat transfer enhancement, while the pressure drop is reduced. The results also reveal that if VGs on one surface of the fin is determined, the locations where VGs are mounted on other surface of the same fin are very important, with configurations studied in this paper, depending on the value of Reynolds number, there exists an optimum location with which best heat transfer performance can be obtained.  相似文献   

17.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

18.
A numerical study is made of flow and heat transfer characteristics of forced convection in a channel that is partially filled with a porous medium. The flow geometry models convective cooling process in a printed circuit board system with a porous insert.The channel walls are assumed to be adiabatic. Comprehensive numerical solutions are acquired to the governing Navier-Stokes equations, using the Brinkman-Forchheimer-extended Darcy model for the regions of porous media. Details of flow and thermal fields are examined over ranges of the principal parameters; i.e., the Reynolds number Re, the Darcy number Da (≡K/H2), the thickness of the porous substrate S, and the ratio of thermal conductivities Rk (≡keff/k). Two types of the location of the porous block are considered. The maximum temperature at the heat source and the associated pressure drop are presented for varying Re, Da, S, and Rk. The results illustrate that as S increases or Da decreases, the fluid flow rate increases. Also, as Rk increases for fixed Da, heat transfer rates are augmented. Explicit influences of Re on the flow and heat transport characteristics are also scrutinized. Assessment is made of the utility of using a porous insert by cross comparing the gain in heat transport against the increase in pressure drop.  相似文献   

19.
The pressure drop and heat transfer coefficient in tube bundle of shell and tube heat exchangers are investigated considering viscous dissipation effects. The governing equations are solved numerically. Because of temperature-dependent viscosity the equations should be solved simultaneously. The flexible tubes vibration is modeled in a quasi-static method by taking the first tube of the row to be in 20 asymmetric positions with respect to the rest of the tubes which are assumed to be fixed and time averaging the steady state solutions corresponding to each one of these positions .The results show that the eccentricity of the first tube increases pressure drop and heat transfer coefficients significantly comparing to the case of rigid tube bundles, symmetrically placed. In addition, these vibrations not only compensate the effect of viscous dissipations on heat transfer coefficient but also increase heat transfer coefficient. The constant viscosity results obtained from our numerical method have a good agreement with the available experimental data of constant viscosity for flexible tube heat exchangers.  相似文献   

20.
This paper presents the analysis of heat transfer in a partially wet annular fin assembly during the process of dehumidification. In past studies, both fully dry and fully wet fins have been analyzed. New analytical formulation leading to a closed-form solution has been developed for a partially wet fin, which is most common in dehumidifier coil operation during air conditioning. The parameters that influenced the heat transfer rate in the finned tube structure are ratio of fin and wall thermal conductivities, ratio of fin thickness to fin pitch, ratio of wall thickness to fin pitch, ratio of fin length to fin pitch, cold fluid Biot number, ambient Biot number, the relative humidity and dry bulb temperature of the incoming air, and the cold fluid temperature inside the coil. Calculations were carried out to study the performance of the heat exchanger. The computed results included the temperature distribution in the wall and the fin and the fin efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号