首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.  相似文献   

2.
We study the appearance and stability of spatiotemporal periodic patterns like phase-locked oscillations, mirror-reflecting waves, standing waves, in-phase or antiphase oscillations, and coexistence of multiple patterns, in a ring of bidirectionally delay coupled oscillators. Hopf bifurcation, Hopf–Hopf bifurcation, and the equivariant Hopf bifurcation are studied in the viewpoint of normal forms obtained by using the method of multiple scales which is a kind of perturbation technique, thus a clear bifurcation scenario is depicted. We find time delay significantly affects the dynamics and induces rich spatiotemporal patterns. With the help of the unfolding system near Hopf–Hopf bifurcation, it is confirmed in some regions two kinds of stable oscillations may coexist. These phenomena are shown for the delay coupled limit cycle oscillators as well as for the delay coupled chaotic Hindmarsh–Rose neurons.  相似文献   

3.
In this paper, a three-dimensional autonomous nonlinear system called the T system which has potential application in secure communications is considered. Regarding the delay as parameter, we investigate the effect of delay on the dynamics of T system with delayed feedback. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, by using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a periodic orbit.  相似文献   

4.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

5.
This paper undertakes an analysis of a double Hopf bifurcation of a maglev system with time-delayed feedback. At the intersection point of the Hopf bifurcation curves in velocity feedback control gain and time delay space, the maglev system has a codimension 2 double Hopf bifurcation. To gain insight into the periodic solution which arises from the double Hopf bifurcation and the unfolding, we calculate the normal form of double Hopf bifurcation using the method of multiple scales. Numerical simulations are carried out with two pairs of feedback control parameters, which show different unfoldings of the maglev system and we verify the theoretical analysis.  相似文献   

6.
The present paper reports the design and analysis of a new time-delayed chaotic system and its electronic circuit implementation. The system is described by a first-order nonlinear retarded type delay differential equation with a closed form mathematical function describing the nonlinearity. We carry out stability and bifurcation analysis to show that with the suitable delay and system parameters the system shows sustained oscillation through supercritical Hopf bifurcation. It is shown through numerical simulations that the system depicts bifurcation and chaos for a certain range of the system parameters. The complexity and predictability of the system are characterized by Lyapunov exponents and Kaplan?CYork dimension. It is shown that, for some suitably chosen system parameters, the system shows hyperchaos even for a small or moderate delay. Finally, we set up an experiment to implement the proposed system in electronic circuit using off-the-shelf circuit elements, and it is shown that the behavior of the time delay chaotic electronic circuit agrees well with our analytical and numerical results.  相似文献   

7.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

8.
Tang  Yuhong  Xiao  Min  Jiang  Guoping  Lin  Jinxing  Cao  Jinde  Zheng  Wei Xing 《Nonlinear dynamics》2017,90(3):2185-2198

In this paper, we address the problem of the bifurcation control of a delayed fractional-order dual model of congestion control algorithms. A fractional-order proportional–derivative (PD) feedback controller is designed to control the bifurcation generated by the delayed fractional-order congestion control model. By choosing the communication delay as the bifurcation parameter, the issues of the stability and bifurcations for the controlled fractional-order model are studied. Applying the stability theorem of fractional-order systems, we obtain some conditions for the stability of the equilibrium and the Hopf bifurcation. Additionally, the critical value of time delay is figured out, where a Hopf bifurcation occurs and a family of oscillations bifurcate from the equilibrium. It is also shown that the onset of the bifurcation can be postponed or advanced by selecting proper control parameters in the fractional-order PD controller. Finally, numerical simulations are given to validate the main results and the effectiveness of the control strategy.

  相似文献   

9.
Time-delay feedback control of container cranes is robustly stable and insensitive to initial conditions for most of the linearly stable region. To better understand this robustness and any limitations of the technique, we undertake a nonlinear analysis of the system. To this end, we develop a nonlinear model of the crane system by modeling the crane-hoist-payload assembly as a double pendulum. Then, we derive a linear approximation specific to this model. Finally, we derive a cubic model of the dynamics for nonlinear analysis. Using linear analysis, we determine the gain and time delay factors for stabilizing controllers. Also, we show that the controller undergoes a Hopf bifurcation at the linear stability boundary. Using the method of multiple scales on the cubic model, we determine the normal form of the Hopf bifurcation. We then show that for practical operating ranges, the controller undergoes a supercritical bifurcation that helps explain the robustness of the controller.  相似文献   

10.
本文研究了索-梁耦合结构的Hopf分岔的反控制,动态窗口滤波反馈控制器在反控制领域有着很广泛的应用。本文通过使用这种控制器,可以使得受控系统在指定的平衡点处产生Hopf分岔。最后,根据庞加莱截面和级数展开法,证明了上述方法的有效性及可行性。  相似文献   

11.
Yan  Xiang-Ping  Liu  Fang-Bin  Zhang  Cun-Hua 《Nonlinear dynamics》2020,99(3):2011-2030

This paper takes into consideration a damped harmonic oscillator model with delayed feedback. After transforming the model into a system of first-order delayed differential equations with a single discrete delay, the single stability switch and multiple stability switches phenomena as well as the existence of Hopf bifurcation of the zero equilibrium of the system are explored by taking the delay as the bifurcation parameter and analyzing in detail the associated characteristic equation. Particularly, in view of the normal form method and the center manifold reduction for retarded functional differential equations, the explicit formula determining the properties of Hopf bifurcation including the direction of the bifurcation and the stability of the bifurcating periodic solutions are given. In order to check the rationality of our theoretical results, numerical simulations for some specific examples are also carried out by means of the MATLAB software package.

  相似文献   

12.
In this article, an eco-epidemiological system with weak Allee effect and harvesting in prey population is discussed by a system of delay differential equations. The delay parameter regarding the time lag corresponds to the predator gestation period. Mathematical features such as uniform persistence, permanence, stability, Hopf bifurcation at the interior equilibrium point of the system is analyzed and verified by numerical simulations. Bistability between different equilibrium points is properly discussed. The chaotic behaviors of the system are recognized through bifurcation diagram, Poincare section and maximum Lyapunov exponent. Our simulation results suggest that for increasing the delay parameter, the system undergoes chaotic oscillation via period doubling. We also observe a quasi-periodicity route to chaos and complex dynamics with respect to Allee parameter; such behavior can be subdued by the strength of the Allee effect and harvesting effort through period-halving bifurcation. To find out the optimal harvesting policy for the time delay model, we consider the profit earned by harvesting of both the prey populations. The effect of Allee and gestation delay on optimal harvesting policy is also discussed.  相似文献   

13.
In this paper, a hybrid control strategy using both state feedback and parameter perturbation is applied to control the Hopf bifurcation in a dual model of Internet congestion control system. By choosing communication delay as a bifurcation parameter, it is proved that when it passes through a critical value, a Hopf bifurcation occurs. However, by adjusting the control parameters of the hybrid control strategy, the Hopf bifurcation has been delayed without changing the original equilibrium point of the system. Theoretical analysis and numerical results show that this method can delay the onset of bifurcation effectively. Therefore, it can extend the stable range in parameter space and improve the performance of congestion control system.  相似文献   

14.
Considering the macroeconomic model of money supply, this paper carries out the corresponding extension of the complex dynamics to macroeconomic model with time delays. By setting the parameters, we discuss the effect of delay variation on system stability and Hopf bifurcation. Results of analysis show that the stability of time-delay systems has important significance with the length of time delay. When time delay is short, the stable point of the system is still in a stable region; when time delay is long, the equilibrium point of the system will go into chaos, and the Hopf bifurcation will appear in certain conditions. In this paper, using the normal form theory and center manifold theorem, the periodic solutions of the system are obtained, and the related numerical analysis are also given; this paper has important innovation-theoretical value and acts as important actual application in macroeconomic system.  相似文献   

15.
In this paper, we consider a delayed food-limited model with feedback control. By regarding the delay as the bifurcation parameter and analyzing the corresponding characteristic equations, the linear stability of the system is discussed, and Hopf bifurcations are demonstrated. By the normal form and the center manifold theory, the explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some examples are presented to verify our main results.  相似文献   

16.
This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.  相似文献   

17.
This paper is devoted to the analysis of a nutrient-plankton model with delayed nutrient cycling. Firstly, stability and Hopf bifurcation of the positive equilibrium are given, and the direction and stability of Hopf bifurcation are also studied. We show that delay, which is considered in the decomposition of dead phytoplankton, can induce stability switches, such that the positive equilibrium switches from stability to instability, to stability again and so on. One can observe that the influence of delay on the system dynamics is essential. Then, we prove that there exists at least one positive periodic solution as the time delay varies in some regions using the global Hopf bifurcation result of Wu (1998, Trans Am Math Soc 350:4799–4838) for functional differential equations. Furthermore, the impact of input rate of nutrient is discussed along with numerical results, and the role of delay in the nutrient cycling is interpreted ecologically. Finally, several groups of illustrations are performed to justify analytical findings.  相似文献   

18.
Hopf bifurcation of a unified chaotic system – the generalized Lorenz canonical form (GLCF) – is investigated. Based on rigorous mathematical analysis and symbolic computations, some conditions for stability and direction of the periodic obits from the Hopf bifurcation are derived.  相似文献   

19.
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, and with linear delayed velocity feedback. The analysis indicates that for a sufficiently large velocity feedback gain, the equilibrium of the system may undergo a number of stability switches with an increase of time delay, and then becomes unstable forever. At each critical value of time delay for which the system changes its stability, a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay. The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability. It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions. The project supported by the National Natural Science Foundation of China (19972025)  相似文献   

20.
To delay the onset of undesirable bifurcation, the bifurcation control has become a subject of intense research activities. In this paper, a small-world network model with the delay feedback is considered, in which the strength of feedback control is a nonlinear function of delay. With this controller, one can change the critical value of bifurcation, and thus enlarge the stable region. Moreover, by adding some proper slowly varying parts into the bifurcation parameters, the stability can be improved. Numerical results show that the dynamics of the small-world network model with the controller of delay-dependent parameters is quite different from that of a system with the controller of delay-independent parameters only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号