首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability switches and global Hopf bifurcation in a nutrient-plankton model
Authors:Yong Wang  Hongbin Wang  Weihua Jiang
Institution:1. Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China
Abstract:This paper is devoted to the analysis of a nutrient-plankton model with delayed nutrient cycling. Firstly, stability and Hopf bifurcation of the positive equilibrium are given, and the direction and stability of Hopf bifurcation are also studied. We show that delay, which is considered in the decomposition of dead phytoplankton, can induce stability switches, such that the positive equilibrium switches from stability to instability, to stability again and so on. One can observe that the influence of delay on the system dynamics is essential. Then, we prove that there exists at least one positive periodic solution as the time delay varies in some regions using the global Hopf bifurcation result of Wu (1998, Trans Am Math Soc 350:4799–4838) for functional differential equations. Furthermore, the impact of input rate of nutrient is discussed along with numerical results, and the role of delay in the nutrient cycling is interpreted ecologically. Finally, several groups of illustrations are performed to justify analytical findings.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号