首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, a hybrid control strategy using both state feedback and parameter perturbation is applied to control the Hopf bifurcation in a dual model of Internet congestion control system. By choosing communication delay as a bifurcation parameter, it is proved that when it passes through a critical value, a Hopf bifurcation occurs. However, by adjusting the control parameters of the hybrid control strategy, the Hopf bifurcation has been delayed without changing the original equilibrium point of the system. Theoretical analysis and numerical results show that this method can delay the onset of bifurcation effectively. Therefore, it can extend the stable range in parameter space and improve the performance of congestion control system.  相似文献   

2.
A simple delayed neural network model with three neurons is considered. By constructing suitable Lyapunov functions, we obtain sufficient delay-dependent criteria to ensure global asymptotical stability of the equilibrium of a tri-neuron network with single time delay. Local stability of the model is investigated by analyzing the associated characteristic equation. It is found that Hopf bifurcation occurs when the time delay varies and passes a sequence of critical values. The stability and direction of bifurcating periodic solution are determined by applying the normal form theory and the center manifold theorem. If the associated characteristic equation of linearized system evaluated at a critical point involves a repeated pair of pure imaginary eigenvalues, then the double Hopf bifurcation is also found to occur in this model. Our main attention will be paid to the double Hopf bifurcation associated with resonance. Some Numerical examples are finally given for justifying the theoretical results.  相似文献   

3.
This paper undertakes an analysis of a double Hopf bifurcation of a maglev system with time-delayed feedback. At the intersection point of the Hopf bifurcation curves in velocity feedback control gain and time delay space, the maglev system has a codimension 2 double Hopf bifurcation. To gain insight into the periodic solution which arises from the double Hopf bifurcation and the unfolding, we calculate the normal form of double Hopf bifurcation using the method of multiple scales. Numerical simulations are carried out with two pairs of feedback control parameters, which show different unfoldings of the maglev system and we verify the theoretical analysis.  相似文献   

4.
This paper investigates the dynamical behaviors for a four-dimensional energy resource system with time delay, especially in terms of equilibria analyses and Hopf bifurcation analysis. By setting the time delay as a bifurcation parameter, it is shown that Hopf bifurcation would occur when the time delay exceeds a sequence of critical values. Furthermore, the stability and direction of the Hopf bifurcation are determined via the normal form theory and the center manifold reduction theorem. Numerical examples are given in the end of the paper to verify the theoretical results.  相似文献   

5.
陈国泰  郑艳红  易丹  曾巧云 《力学学报》2022,54(10):2874-2882
研究大脑基底神经节中产生异常β振荡的起源有助于分析帕金森病的致病机理. 本文系统地研究了改进的皮质?基底神经节(E-I-STN-GPe-GPi)共振模型的振荡动力学. 首先, 通过Routh-Hurwitz准则和稳定性理论获得了该模型局部平衡点处的稳定性与Hopf分岔发生的条件, 并且推导出该共振模型存在Hopf分岔的时滞参数范围. 研究发现, 增加突触传输时滞能够使模型产生Hopf分岔, 并且诱导β振荡的产生, 使系统在健康和帕金森病这两个状态之间相互转换. 其次, 揭示了β振荡的产生与丘脑底核相关的突触连接强度有关. 数值模拟发现, 当丘脑底核同时受到兴奋性神经元集群和苍白球外侧较强的促进作用时, 丘脑底核产生振荡. 最后, 分析了与苍白球内侧有关的参数对其产生振荡的影响, 研究结果发现, 当较小的苍白球外侧突触连接强度和较大的突触传输时滞共同作用时, 苍白球内侧更容易发生振荡, 且振幅越来越大. 希望本文对E-I-STN-GPe-GPi共振模型的动力学特征的研究有助于人们理解帕金森病的致病机理和揭示帕金森病异常β振荡的来源.   相似文献   

6.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

7.
In this paper, we investigate the stability and bifurcation of a class of coupled nonlinear relative rotation system with multi-time delay feedbacks. Using dissipative system Lagrange equation, the dynamics equation of coupled nonlinear relative rotation system with three masses is established. The dynamical behaviors of the system under multi-time delay feedbacks, with two state variables, are discussed. First, characteristic roots and the stable regions of time delay are determined by direct method. The relation between two time delays ratio or time delay feedbacks gains and the stable regions of time delay is analyzed. Second, the direction and stability of Hopf bifurcation are decided by normal form theorem and center manifold argument. Finally, numerical simulation can confirm the validity of the conclusion.  相似文献   

8.
In this paper, we aim to investigate the dynamics of a system of Van der Pol–Duffing oscillators with delay coupling. First, taking the time delay as a bifurcation parameter, the stability of the equilibrium, and the existence of Hopf bifurcation are investigated. Then using the center manifold reduction technique and normal form theory, we give the direction of the Hopf bifurcation. And then by means of the symmetric bifurcation theory for delay differential equations and the representation theory of groups, we claim the bifurcation periodic solution induced by time delay is antiphase locked oscillation. Finally, at the end of the paper, numerical simulations are carried out to support our theoretical analysis.  相似文献   

9.
The time-delayed feedback control for a supersonic airfoil results in interesting aeroelastic behaviors. The effect of time delay on the aeroelastic dynamics of a two-dimensional supersonic airfoil with a feedback control surface is investigated. Specifically, the case of a 3-dof system is considered in detail, where the structural nonlinearity is introduced in the mathematical model. The stability analysis is conducted for the linearized system. It is shown that there is a small parameter region for delay-independently stability of the system. Once the controlled system with time delay is not delay-independently stable, the system may undergo the stability switches with the variation of the time delay. The nonlinear aeroelastic system undergoes a sequence of Hopf bifurcations if the time delay passes the critical values. Using the normal form method and center manifold theory, the direction of the Hopf bifurcation and stability of Hopf-bifurcating periodic solutions are determined. Numerical simulations are performed to illustrate the obtained results.  相似文献   

10.
This paper is devoted to the analysis of a nutrient-plankton model with delayed nutrient cycling. Firstly, stability and Hopf bifurcation of the positive equilibrium are given, and the direction and stability of Hopf bifurcation are also studied. We show that delay, which is considered in the decomposition of dead phytoplankton, can induce stability switches, such that the positive equilibrium switches from stability to instability, to stability again and so on. One can observe that the influence of delay on the system dynamics is essential. Then, we prove that there exists at least one positive periodic solution as the time delay varies in some regions using the global Hopf bifurcation result of Wu (1998, Trans Am Math Soc 350:4799–4838) for functional differential equations. Furthermore, the impact of input rate of nutrient is discussed along with numerical results, and the role of delay in the nutrient cycling is interpreted ecologically. Finally, several groups of illustrations are performed to justify analytical findings.  相似文献   

11.
In this paper, a class of predator-prey model with discrete and distributed time delay is considered. Its dynamics are studied in terms of local analysis and Hopf bifurcation analysis. By using the normal form theory and center manifold theory, we derive some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, main conclusions are included.  相似文献   

12.
Time-delay feedback control of container cranes is robustly stable and insensitive to initial conditions for most of the linearly stable region. To better understand this robustness and any limitations of the technique, we undertake a nonlinear analysis of the system. To this end, we develop a nonlinear model of the crane system by modeling the crane-hoist-payload assembly as a double pendulum. Then, we derive a linear approximation specific to this model. Finally, we derive a cubic model of the dynamics for nonlinear analysis. Using linear analysis, we determine the gain and time delay factors for stabilizing controllers. Also, we show that the controller undergoes a Hopf bifurcation at the linear stability boundary. Using the method of multiple scales on the cubic model, we determine the normal form of the Hopf bifurcation. We then show that for practical operating ranges, the controller undergoes a supercritical bifurcation that helps explain the robustness of the controller.  相似文献   

13.
In this paper, a delayed predator-prey model with dormancy of predators is investigated. It shows that time delay in the prey-species growth can lead to the occurrence of Hopf bifurcation with stability switches at a coexistence equilibrium. The computing formulas of stability and direction of the Hopf bifurcating periodic solutions are given. Under appropriate conditions, the uniform persistence of this model with time delay is proved. In this simple model, multiple periodic solutions coexist. Through numerical simulation, it is shown that different values of time delay can generate or eliminate chaos. Biologically, our results imply that dynamical behaviors of this system with time delay strongly depend on the initial density of this model and the time delay of the growth of the prey.  相似文献   

14.
In this paper, we considered a delayed differential equation modeling two-neuron system with both inertial terms and time delay. By analyzing the distribution of the eigenvalues of the corresponding transcendental characteristic equation of its linearized equation, local stability criteria are derived for various model parameters and time delay. By choosing time delay as a bifurcation parameter, the model is found to undergo a sequence of Hopf bifurcation. Furthermore, the direction and the stability of the bifurcating periodic solutions are determined by using the normal form theory and the center manifold theorem. Also, resonant codimension-two bifurcation is found to occur in this model. Some numerical examples are finally given for justifying the theoretical results. Chaotic behavior of this inertial two-neuron system with time delay is found also through numerical simulation, in which some phase plots, waveform plots, power spectra and Lyapunov exponent are computed and presented.  相似文献   

15.
We study the appearance and stability of spatiotemporal periodic patterns like phase-locked oscillations, mirror-reflecting waves, standing waves, in-phase or antiphase oscillations, and coexistence of multiple patterns, in a ring of bidirectionally delay coupled oscillators. Hopf bifurcation, Hopf–Hopf bifurcation, and the equivariant Hopf bifurcation are studied in the viewpoint of normal forms obtained by using the method of multiple scales which is a kind of perturbation technique, thus a clear bifurcation scenario is depicted. We find time delay significantly affects the dynamics and induces rich spatiotemporal patterns. With the help of the unfolding system near Hopf–Hopf bifurcation, it is confirmed in some regions two kinds of stable oscillations may coexist. These phenomena are shown for the delay coupled limit cycle oscillators as well as for the delay coupled chaotic Hindmarsh–Rose neurons.  相似文献   

16.
The congestion control algorithm, which has dynamic adaptations at both user ends and link ends, with heterogeneous delays is considered and analyzed. Some general stability criteria involving the delays and the system parameters are derived by generalized Nyquist criteria. Furthermore, by choosing one of the delays as the bifurcation parameter, and when the delay exceeds a critical value, a limit cycle emerges via a Hopf bifurcation. Resonant double Hopf bifurcation is also found to occur in this model. An efficient perturbation-incremental method is presented to study the delay-induced resonant double Hopf bifurcation. For the bifurcation parameter close to a double Hopf point, the approximate expressions of the periodic solutions are updated iteratively by use of the perturbation-incremental method. Simulation results have verified and demonstrated the correctness of the theoretical results.  相似文献   

17.
Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluc-tuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratiodependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.  相似文献   

18.
van der Pol型时滞系统的两参数余维一Hopf分岔及其稳定性   总被引:5,自引:0,他引:5  
研究具有三次非线性时滞项的van der Pol型时滞系统随两参数(时滞量和增益系数)余维一Hopf分岔,说明了线性化特性方程随两参数变化时的根的分布和Hopf分岔存在性;通过构造中心流形并且使用范式方法确定出Hopf分岔的方向以及周期解的稳定性;分析了时滞量对所论系统发生Hopf分岔的影响。  相似文献   

19.
Nonlinear time delay differential equations are well known to havearisen in models in physiology, biology and population dynamics. Theyhave also arisen in models of metal cutting processes. Machine toolchatter, from a process called regenerative chatter, has been identifiedas self-sustained oscillations for nonlinear delay differentialequations. The actual chatter occurs when the machine tool shifts from astable fixed point to a limit cycle and has been identified as arealized Hopf bifurcation. This paper demonstrates first that a class ofnonlinear delay differential equations used to model regenerativechatter satisfies the Hopf conditions. It then gives a precisecharacterization of the critical eigenvalues on the stability boundaryand continues with a complete development of the Hopf parameter, theperiod of the bifurcating solution and associated Floquet exponents.Several cases are simulated in order to show the Hopf bifurcationoccurring at the stability boundary. A discussion of a method ofintegrating delay differential equations is also given.  相似文献   

20.
In this paper, from the view of stability and chaos control, we investigate the Rossler chaotic system with delayed feedback. At first, we consider the stability of one of the fixed points, verifying that Hopf bifurcation occurs as delay crosses some critical values. Then, for determining the stability and direction of Hopf bifurcation we derive explicit formulae by using the normal-form theory and center manifold theorem. By designing appropriate feedback strength and delay, one of the unstable equilibria of the Rossler chaotic system can be controlled to be stable, or stable bifurcating periodic solutions occur at the neighborhood of the equilibrium. Finally, some numerical simulations are carried out to support the analytic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号