首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A new microscale uniaxial tension experimental method was developed to investigate the strain rate dependent mechanical behavior of freestanding metallic thin films for MEMS. The method allows for highly repeatable mechanical testing of thin films for over eight orders of magnitude of strain rate. Its repeatability stems from the direct and full-field displacement measurements obtained from optical images with at least 25 nm displacement resolution. The method is demonstrated with micron-scale, 400-nm thick, freestanding nanocrystalline Pt specimens, with 25 nm grain size. The experiments were conducted in situ under an optical microscope, equipped with a digital high-speed camera, in the nominal strain rate range 10−6–101 s−1. Full field displacements were computed by digital image correlation using a random speckle pattern generated onto the freestanding specimens. The elastic modulus of Pt, E = 182 ± 8 GPa, derived from uniaxial stress vs. strain curves, was independent of strain rate, while its Poisson’s ratio was v = 0.41 ± 0.01. Although the nanocrystalline Pt films had the elastic properties of bulk Pt, their inelastic property values were much higher than bulk and were rate-sensitive over the range of loading rates. For example, the elastic limit increased by more than 110% with increasing strain rate, and was 2–5 times higher than bulk Pt reaching 1.37 GPa at 101 s−1.  相似文献   

2.
This paper presents the theoretical modeling and corresponding experimental results of the oblique incidence response of a luminescent photoelastic coating (LPC) applied to a cylinder under load. LPC is a measurement technique to acquire full-field maximum shear strain and its principal strain direction. The technique uses an absorption dye and a luminescent dye within a photoelastic coating, and the coating is applied on the surface of the specimen using conventional aerosol techniques. On 3D objects, the response of the emission field is dependent on the excitation orientation due to the surface inclination of the structural component and the out-of-plane strain component within the coating. Full-field strain separated results have been previously demonstrated on a 2D specimen. The extension of the strain separation technique to a 3D specimen—a cylinder in bending—is the focus of this investigation. Two different responses were obtained from normal and oblique excitation. As a result, the principal strain was separated over ±56° of circumference of the cylinder with RMS error relative to the theoretical result of 87 μɛ for maximum principal strain and 78 μɛ for minimum.  相似文献   

3.
This paper describes a novel measuring system for investigating the influence of pressure and temperature on the mechanical properties of time-dependent polymer materials. The system can measure the volume and the shear relaxation moduli of solid polymer specimens simultaneously subjected to temperatures from −50 to +120°C with a precision of ±0.01°C, and pressures from atmospheric to 500 MPa with a precision of ±0.1 MPa. The paper demonstrates the measuring capabilities of the apparatus. For poly(vinyl) acetate (PVAc) are presented sample measurements of the shear relaxation modulus as function of time, pressure and temperature; specific volume; the bulk creep compliance; the coefficient of thermal expansion; the bulk modulus; and the pressure drop experiments which simulate conditions to which a material is exposed during the injection molding process. The shear moduli may be measured in the range from 1 to 4,000 MPa with the relative error of 3%.The error of volumetric measurements is 0.05%, which corresponds to 0.00005 cm3/g. In all cases results are shown as measured, no additional smoothing or filtering was employed. This paper is dedicated to Professor Nicholas W. Tschoegl on the occasion of his 87th birthday, for his contributions to the field of time-dependent bulk properties of polymeric materials.  相似文献   

4.
The tensile behaviour of two types of viscoelastic bituminous films confined between mineral aggregates or steel as adherends, was investigated in the brittle and ductile regimes. Uniaxial specimens were fabricated employing a prototype set up allowing construction of micro-scale thin films and visualization of failure phenomena. The effect of key parameters, namely, temperature (23°C and −10°C), binder type (straight run and polymer modified), adherend type (stainless steel and mineral aggregate), and water conditioning were investigated sequentially. The results show that water sensitive aggregate-binder combinations in macro (150 mm diameter) and mega (in service) scales also displayed reduced tensile strength in the micro scale when water conditioned. At 23°C ductile failure and at −10°C brittle fracture were observed. At 23°C phenomena, such as formation of striations during tensile mechanical loading, void nucleation and growth, filamentation and large ductile flow before fracture could be witnessed. When using proper surface preparation procedures, in all types of specimen investigated at 23°C only cohesive failure and at −10°C predominantly adhesive-cohesive failure were found.  相似文献   

5.
The main objective of this article is to describe the drying process of ceramic roof tiles, shaped from red clay, using diffusion models. Samples of the product with initial moisture content of 0.24 (db) were placed inside an oven in the temperatures of 55.6, 69.7, 82.7 and 98.6°C; and the data of the drying kinetics were obtained. The analytical solutions of the diffusion equation for the parallelepiped with boundary conditions of the first and third kinds were used to describe the drying processes. The process parameters were determined using an optimization algorithm based on inverse method coupled to the analytical solutions. The analysis of the results makes it possible to affirm that the boundary condition of the third kind satisfactorily describes the drying processes. The values obtained for the convective mass transfer coefficient were between 8.25 × 10−7 and 1.64 × 10−6 m s−1, and for the effective water diffusivity were between 9.21 × 10−9 and 1.80 × 10−8 m2 s−1.  相似文献   

6.
A combination of drift distortion removal and spatial distortion removal are performed to correct Scanning Electron Microscope (SEM) images at both ×200 and ×10,000 magnification. Using multiple, time-spaced images and in-plane rigid body motions to extract the relative displacement field throughout the imaging process, results from numerical simulations clearly demonstrate that the correction procedures successfully remove both drift and spatial distortions with errors on the order of ±0.02 pixels. A series of 2D translation and tensile loading experiments are performed in an SEM for magnifications at ×200 and ×10,000, where both the drift and spatial distortion removal methods described above are applied to correct the digital images and improve the accuracy of measurements obtained using 2D-DIC. Results from translation and loading experiments indicate that (a) the fully corrected displacement components have nearly random variability with standard deviation of 0.02 pixels (≈25 nm at ×200 and ≈0.5 nm at ×10,000) in each displacement component and (b) the measured strain fields are unbiased and in excellent agreement with expected results, with a spatial resolution of 43 pixels (≈54 μm at ×200 and ≈1.1 μm at ×10,000) and a standard deviation on the order of 6 × 10−5 for each component.
M. A. Sutton (SEM member)Email:
  相似文献   

7.
The potential of a high electric field was utilized to induce ice nucleus formation in aqueous solutions. Using this technique it was possible to reduce the primary drying time during lyophilization. Samples of 10% (w/v) hydroxyethylstarch (HES) solution were frozen at a constant rate of −1 K/min, while nucleation was initiated at temperatures of −1.5, −4.5 and −8.5°C. In contrast, spontaneous nucleation was observed in a range between −11.5 and −17.1°C. Electrically induced nucleus formation has proved to be a reliable method to start crystallization at a desired temperature. Continuous measurement of the weight allowed to determine the drying rate and to detect at which time primary drying was completed. The drying time and the drying rate were found to be strongly dependent on the nucleation temperature during freezing. A relation between the nucleation temperature, the structure of the frozen samples and the drying times could be established.
Ansgar PetersenEmail:
  相似文献   

8.
This paper reports a new technique, namely the incremental micro-hole-drilling method (IμHD) for mapping in-plane residual or applied stresses incrementally as a function of depth at the micron-scale laterally and the sub-micron scale depth-wise. Analogous to its macroscale counterpart, it is applicable either to crystalline or amorphous materials, but at the sub-micron scale. Our method involves micro-hole milling using the focused ion beam (FIB) of a dual beam FEGSEM/FIB microscope. The resulting surface displacements are recorded by digital image correlation of SEM images recorded during milling. The displacement fields recorded around the hole are used to reconstruct the stress profile as a function of depth. In this way residual stresses have been characterized around a drilled hole of 1.8microns. diameter, enabling the profiling of the stress variation at the sub-micron scale to a depth of 1.8 microns. The new method is used to determine the near surface stresses in a (peened) surface-severe-plastically-deformed (S2PD) Zr50Cu40Al10 (in atomic percent, at.%) bulk metallic glass bar. In plane principal stresses of -800 MPa ± 90 MPa and −600 MPa ± 90 MPa were measured, the maximum compressive stress being oriented 15° to the axis of the bar.  相似文献   

9.
In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°–45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5–5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased.  相似文献   

10.
The temperature-dependent viscoelastic properties of polymers were investigated by small-scale dynamic mechanical analysis in the range of −100°C to 200°C. The polymers tested included glassy polymer (atactic polystyrene), semicrystalline polymer (high-density polyethylene) and rubbery polymer (polyisobutylene). The small-scale dynamic mechanical analyses were performed by using a flat-tip indenter with an oscillating displacement of amplitude 36 nm. The force amplitude and phase angle were measured, from which the storage modulus E′ and loss tangent tanδ were calculated. The results obtained from indentation experiments are consistent with those obtained from conventional dynamic mechanical analyzer (DMA). It is thus demonstrated that the indentation technique can quantitatively measure the temperature-dependent viscoelastic properties of polymers at small dimensions.  相似文献   

11.
The digital image correlation (DIC) technique is successfully applied across multiple length scales through the generation of a suitable speckle pattern at each size scale. For microscale measurements, a random speckle pattern of paint is created with a fine point airbrush. Nanoscale displacement resolution is achieved with a speckle pattern formed by solution deposition of fluorescent silica nanoparticles. When excited, the particles fluoresce and form a speckle pattern that can be imaged with an optical microscope. Displacements are measured on the surface and on an interior plane of transparent polymer samples with the different speckle patterns. Rigid body translation calibrations and uniaxial tension experiments establish a surface displacement resolution of 1 μm over a 5×6 mm scale field of view for the airbrushed samples and 17 nm over a 100×100 μm scale field of view for samples with the fluorescent nanoparticle speckle. To demonstrate the capabilities of the method, we characterize the internal deformation fields generated around silica microspheres embedded in an elastomer under tensile loading. The DIC technique enables measurement of complex deformation fields with nanoscale precision over relatively large areas, making it of particular relevance to materials that possess multiple length scales.  相似文献   

12.
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity (U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10−5 and 5.981 × 10−5 m2/h for slab products, 0.818 × 10−5 and 6.287 × 10−5 m2/h for cylindrical products and 1.213 × 10−7 and 7.589 × 10−7 m2/h spherical products using the Model-I and 0.316 × 10−5–5.072 × 10−5 m2/h for slab products, 0.580 × 10−5–9.587 × 10−5 m2/h for cylindrical products and 1.408 × 10−7–13.913 × 10−7 m2/h spherical products using the Model-II.  相似文献   

13.
The objective of this study was to determine the effect of temperature of spruce (Picea orientalis L.) logs during peeling process on surface roughness, adhesive wettability, colour variation of veneer, and shear strength of plywood made from these veneer sheets. Veneer samples were manufactured from the logs after they were kept for 3 h and 24 h to reach to average temperatures of 52 °C and 32 °C, respectively. A fine stylus method was used for surface roughness evaluation of the veneer produced from two types of the logs and it was found that the samples peeled from the logs with a temperature of 52 °C had significantly better roughness values than those of manufactured from the logs with 32 °C at a 95% confidence level. Wettability of veneer samples was determined with contact angle measurements according to the sessile drop method. Urea formaldehyde (UF) and phenol formaldehyde (PF) resin drops were used in contact angle measurements. Contact angles of PF resin drops on veneers were similar for each peeling temperature while the contact angles of UF glue resin on veneers produced from the logs with 32 °C were lower than those of produced from the logs with 52 °C. Small colour difference was measured (indicated by a low ΔE value) on veneer samples depending on the log temperature. The highest shear strength value was determined for the plywood manufactured from veneers obtained from the logs with 52 °C by using UF glue.  相似文献   

14.
An enclosed rotating disk apparatus (RDA) with rotational speed up to 5,500 rpm and with temperature control from −5 to 55°C was designed to screen the turbulent drag reducing effectiveness of small samples of newly synthesized drag reducing additives. First, the rotating disk was calibrated with water using both logarithmic and power law models. Then experiments were carried out to measure the frictional torque reduction for a drag reducing aqueous cationic surfactant system (5 mM Ethoquad O12 with 12.5 mM sodium salicylate) over a range of Re. The maximum drag reduction at 30°C was about 47% at Re = 1.90 × 106. For the first time, results with the RDA were compared with those in a circular pipe flow system. They showed similar trends indicating it is a useful screening device for small samples, giving conservative estimates of surfactant effectiveness compared with pipe flow.
Jacques L. ZakinEmail:
  相似文献   

15.
The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between −30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini’s correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.  相似文献   

16.
Silicon elastomer surface is treated towards achieving the hydrophobic state. Functionalized nano-silica units are coated onto elastomer surface and resulting texture characteristics are examined prior to stretching, stretched and after stretching. The droplet heating of the hydrophobic elastomer surface is carried out when the surface is subjected to unstretching, stretching and stretch releasing conditions. The thermal-flow field in the liquid is simulated and validated incorporating high speed recording system. Nano-size silica units coated elastomer surface demonstrates the hydrophobic wetting state. The hydrophobic wetting state changes slightly for stretched and stretched released surface. The contact angle is about 154° ± 2° for unstretched surface while it is 152° ± 2° for the stretched released surface; hence, stretch relaxing provides reversible change of the surface wetting state of the elastomer surface. The contact angle reduces to 142° ± 2° when surface is under stretched, which is related to increased pillar spacing on the surface. The droplet heating results in development of Marangoni current in the fluid, which significantly affects the flow and temperature fields and it becomes more apparent for the large size droplets. The maximum flow velocity increases almost 9% in 45 µL as the surface is stretched. The Nusselt number increases with droplet size and the Bond number has the values less than unity; hence, stretching increases the Nusselt number by 60% for droplet of 45 µL.  相似文献   

17.
Natural convective heat transfer from an isothermal narrow flat plate embedded in a plane adiabatic surface and inclined at moderate positive and negative angles to the vertical has been numerically and experimentally studied. The solution has the Rayleigh number, the dimensionless plate width, the angle of inclination, and the Prandtl number as parameters. Attention was restricted to a Prandtl number of 0.7. The numerical results have been obtained for Rayleigh numbers between 103 and 107 for dimensionless plate widths of between 0.3 and 1.2 and for angles of inclination between +45° and −45°. In the experimental study, results have been obtained for Rayleigh numbers between 4 × 102 and 105 for dimensionless plate widths of 0.4 and 2.5 and for angles of inclination between +45° and −45° to the vertical. Empirical equations for the heat transfer rate have been derived.  相似文献   

18.
This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flows using temperature-sensitive particles (TSPs), a pulsed ultraviolet laser, and a high-speed camera. TSPs respond to temperature changes in the flow and can also serve as tracers for the velocity field. The luminescence from the TSPs was recorded at 15,000 frames per second as sequential images for a lifetime-based temperature analysis. These images were also used for the particle image velocimetry calculations. The temperature field was estimated using several images, based on the lifetime method. The decay curves for various temperature conditions fit well to exponential functions, and from these the decay constants at each temperature were obtained. The proposed technique was applied to measure the temperature and velocity fields in natural convection driven by a Marangoni force and buoyancy in a rectangular tank. The accuracy of the temperature measurement of the proposed technique was ±0.35–0.40°C.  相似文献   

19.
In order to evaluate characteristics of the liquid film flow and their influences on heat and mass transfer, measurements of the instantaneous film thickness using a capacitance method and observation of film breakdown are performed. Experimental results are reported in the paper. Experiments are carried out at Re = 250–10000, T in = 20–50°C and three axial positions of vertically falling liquid films for film thickness measurements. Instantaneous surface waveshapes are given by the interpretation of the test data using the cubic spline method. The correlation of the mean film thickness versus the film Reynolds number is also given by fitting the test data. It is revealed that the surface wave has nonlinear behavior. Observation of film breakdown is performed at Re = 1.40 × 103–1.75 × 104 and T in = 85–95°C. From experimental results, the correlation of the film breakdown criterion can be obtained as follows: Bd = 1.567 × 10−6 Re 1.183  相似文献   

20.
A series of baseline displacement measurements have been obtained using 2D Digital Image Correlation (2D-DIC) and images from Scanning Electron Microscopes (SEM). Direct correlation of subsets from a reference image to subsets in a series of uncorrected images is used to identify the presence of non-stationary step-changes in the measured displacements. Using image time integration and recently developed approaches to correct residual drift and spatial distortions in recorded images, results clearly indicate that the corrected SEM images can be used to extract deformations with displacement accuracy of ±0.02 pixels (1 nm at magnification of 10,000) and mean value strain measurements that are consistent with independent estimates and have point-to-point strain variability of ±1.5 × 10−4.
M. A. Sutton (SEM member)Email:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号