首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
开发了配置点谱方法SCM(spectral collocation method)与人工压缩法ACM(artificial compressibility method)相结合的方法 SCM-ACM,用于求解不可压缩粘性流动问题。选取典型的方腔顶盖驱动流为研究测试对象,首先建立人工压缩格式的控制方程,其次采用SCM离散控制方程的空间偏微分项,推导出矩阵形式的代数方程,最后测试了SCM-ACM代码的有效性。结果显示,SCM-ACM能够有效求解不可压缩流动问题,并继承了谱方法的指数收敛特性,且具有ACM求解过程简单及易于实施的特点。  相似文献   

2.
发展了配置点谱方法SCM(Spectral collocation method)和人工压缩法ACM(Artificial compressibility method)相结合的SCM-ACM数值方法,计算了柱坐标系下稳态不可压缩流动N-S方程组。选取典型的同心圆筒间旋转流动Taylor-Couette流作为测试对象,首先,采用人工压缩法获得人工压缩格式的非稳态可压缩流动控制方程;再将控制方程中的空间偏微分项用配置点谱方法进行离散,得到矩阵形式的代数方程;编写了SCM-ACM求解不可压缩流动问题的程序;最后,通过与公开发表的Taylor-Couette流的计算结果对比,验证了求解程序的有效性。结果证明,本文发展的SCM-ACM数值方法能够用于求解圆筒内不可压缩流体流动问题,该方法既保留了谱方法指数收敛的特性,也具有ACM形式简单和易于实施的特点。本文发展的SCM-ACM数值方法为求解柱坐标下不可压缩流体流动问题提供了一种新的选择。  相似文献   

3.
微可压缩模型(slightly compressible model,SCM)是求解低马赫数流动的一种有效模型, SCM在求解过程中不必满足速度散度为零的条件,可直接应用时间推进方法求解得到不可压缩N-S方程的解. 深入研究了该模型的效率和精度; 为了提高收敛速度将预处理技术引入到该模型中, 推导了预处理后的控制方程和特征系统, 并构造了预处理后的通量. 通过对圆柱绕流、方腔流动、NACA0012翼型和6:1椭球的数值模拟, 一方面, 进一步展示了SCM的可行性与健壮性, 表明SCM适合于低马赫流动的数值模拟; 另一方面, 充分验证了预处理技术在微可压缩模型中的作用, 一定程度上解决了低马赫数流动的收敛问题, 并提高了求解的准确性和精度. 这为SCM应用于工程实际创造了一定的条件.   相似文献   

4.
针对不可压缩可压缩水/气多介质问题, 提出一种新的界面处理方法。在可压缩水/气界面处构造Riemann问题, 在水中设音速趋于无穷大, 求解Riemann问题得到不可压缩可压缩水/气界面处流体的准确流动状态; 然后以此状态结合GFM(ghost fluid method)方法分别为2种流体定义界面边界条件, 将两相流问题转化为单相流问题计算, 通过求解level set方程来跟踪界面的位置。对各种不同的界面边界条件定义方法进行了比较, 数值模拟结果表明算法能准确地捕捉各类间断的位置, 证明了算法的有效性和稳健性。  相似文献   

5.
引入人工压力变量,将弹性本构方程以应力、应变和压力表达,建立求解不可压缩平面弹性问题的位移-压力方程和不可压缩条件方程的耦合偏微分方程组。利用张量积型重心Lagrange插值近似二元函数,得到计算插值节点处偏导数的偏微分矩阵。采用配点法离散不可压缩弹性控制方程,利用偏微分矩阵直接离散弹性力学控制方程为矩阵形式方程组。利用插值公式离散位移和应力边界条件,将离散边界条件与离散控制方程组合为新的方程组,得到求解弹性问题的过约束线性代数方程组;利用最小二乘法求解线性方程组,得到弹性力学问题位移数值解。数值算例验证了所提方法的数值计算精度为10-14~10-10。  相似文献   

6.
本文用边界元方法求解了二维不可压缩粘性流动的涡量——速度方程,利用求解区域边界上的速度法向导数和速度值直接得到了涡量的边界条件,克服了利用涡量方程求解二维不可压缩粘性流动时涡量边界条件(主要是壁面边界条件)难以给定的困难,算例表明:这种方法比较简单且计算结果基本上是令人满意的。  相似文献   

7.
高阶紧致格式求解二维粘性不可压缩复杂流场   总被引:3,自引:0,他引:3  
修东滨  任安禄 《力学学报》1996,28(3):264-269
提出了一种求解二维不可压缩复杂流场的高精度算法.控制方程为原始变量、压力Poisson方程提法.在任意曲线坐标下,采用四阶紧致格式求解Navier-Stokes方程组,时间推进采用交替方向隐式(ADI)格式,在非交错网格上用松弛法求解压力Poisson方程.对于复杂的流场,采用了区域分解方法,并在每一时间步对各子域实施松弛迭代使之能精确地反映非定常流场.利用该算法计算了二维受驱空腔流动,弯管流动和垂直平板的突然起动问题.计算结果与实验结果和其他研究者的计算结果相比较吻合良好.对于平板起动流动,成功地模拟了流场中旋涡的生成以及Karman涡街的形成  相似文献   

8.
二维定常不可压缩粘性流动N-S方程的数值流形方法   总被引:4,自引:4,他引:0  
将流形方法应用于定常不可压缩粘性流动N-S方程的直接数值求解,建立基于Galerkin加权余量法的N-S方程数值流形格式,有限覆盖系统采用混合覆盖形式,即速度分量取1阶和压力取0阶多项式覆盖函数,非线性流形方程组采用直接线性化交替迭代方法和Nowton-Raphson迭代方法进行求解.将混合覆盖的四节点矩形流形单元用于阶梯流和方腔驱动流动的数值算例,以较少单元获得的数值解与经典数值解十分吻合.数值实验证明,流形方法是求解定常不可压缩粘性流动N-S方程有效的高精度数值方法.  相似文献   

9.
应用有限元方法研究了微注射成型中瞬态、可压缩、非牛顿熔体流动的黏弹性对流动前沿及流动平衡的影响。基于Phan-Thien-Tanner模型建立了熔体流动的本构方程,利用Hele-Shaw假设和简化建立了瞬态、可压缩、非牛顿熔体流动的连续性方程、动量方程、能量方程;为了有效地描述微注射成型的尺寸效应,采用了边界滑移和表面张力边界条件。通过分部积分和待定系数法导出了带有边界信息的变分方程和求解应力分量的半解析公式,构造了有限元离散求解及超松驰迭代算法。模拟结果表明:熔体的黏弹性对浇口附近的压力和后续的熔体流动前沿有重要影响;与黏性模型相比,黏弹性模型可以控制模拟压力的快速增长,减少不同型腔之间的充填差异,与短射实验结果也更吻合。  相似文献   

10.
不可压缩机翼绕流的有限谱法计算   总被引:2,自引:0,他引:2  
结合有限谱QUICK格式求解不可压缩粘性流问题。这一格式用于模拟不同攻角下的NACA1200机翼绕流问题。利用体积力,提出了将流场速度从0加速到来流速度的方法。区别于传统的压力梯度为零的边界条件,推导出一个更精确的压力边界条件。为使速度散度保持为零,在泊松方程中给速度散度一个特殊的处理。这一成果说明了有限谱法不但具有很高的精度,而且能灵活地和其他格式一起构造出新的格式,从而成功地应用到复杂流场不可压缩流动的数值计算中。  相似文献   

11.
In this study, the Nervier–Stokes equations for incompressible flows, modified by the artificial compressibility method, are investigated numerically. To calculate the convective fluxes, a new high‐accuracy characteristics‐based (HACB) scheme is presented in this paper. Comparing the HACB scheme with the original characteristic‐based method, it is found that the new proposed scheme is more accurate and has faster convergence rate than the older one. The second order averaging scheme is used for estimating the viscose fluxes, and spatially discretized equations are integrated in time by an explicit fourth‐order Runge–Kutta scheme. The lid driven cavity flow and flow in channel with a backward facing step have been used as benchmark problems. It is shown that the obtained results using HACB scheme are in good agreement with the standard solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A high-order discontinuous Galerkin (DG) method is proposed in this work for solving the two-dimensional steady and unsteady incompressible Navier-Stokes (INS) equations written in conservative form on arbitrary grids. In order to construct the interface inviscid fluxes both in the continuity and in the momentum equations, an artificial compressibility term has been added to the continuity equation for relaxing the incompressibility constraint. Then, as the hyperbolic nature of the INS equations has been recovered, the local Lax-Friedrichs (LLF) flux, which was previously developed in the context of hyperbolic conservation laws, is applied to discretize the inviscid term. Unlike the traditional artificial compressibility method, in this work, the artificial compressibility is introduced only for the construction of the inviscid numerical fluxes; therefore, a consistent discretization of the INS equations is obtained, irrespective of the amount of artificial compressibility used. What is more, as the LLF flux can be obtained directly and straightforward, no numerical iteration for solving an exact Riemann problem is entailed in our method. The viscous term is discretized by the direct DG method, which was developed based on the weak formulation of the scalar diffusion problems on structured grids. The performance and the accuracy of the method are demonstrated by computing a number of benchmark test cases, including both steady and unsteady incompressible flow problems. Due to its simplicity in implementation, our method provides an attractive alternative for solving the INS equations on arbitrary grids.  相似文献   

13.
对非稳态粘性不可压流动问题提出了一种隐式最小二乘等几何计算方法。该方法先用隐式的向后多步差分格式对Navier-Stokes方程进行时间离散,再用Newton法线性化对流项,最后在每个时间步上用最小二乘等几何方法进行求解。根据该算法编制了计算程序,通过构造解析解的方法验证了程序的正确性,用该程序求解了雷诺数为5000时的非稳态二维顶盖驱动流问题,计算结果捕捉到了流动过程中涡的演化过程,表明本文方法可用于非稳态流动的求解。  相似文献   

14.
The convergence and accuracy characteristics of the preconditioned incompressible Euler and Navier–Stokes equations are studied. An object-oriented C++ numerical code has been developed for solving the inviscid and viscous, steady, incompressible flows problems. The code is based on the cell-centred finite volume method. In this scheme, two-dimensional incompressible Euler and Navier–Stokes equations are modified by a robust artificial compressibility (AC) and a local preconditioning matrix of pressure-sensor type. The preconditioned equations are solved with the Jameson's numerical approach, i.e. artificial dissipation and artificial viscosity terms under the form of a fourth- and second-order derivative, respectively. An explicit four-stage Runge–Kutta integration algorithm is applied to obtain the steady-state condition. The computed results include the steady-state solution of flow past the NACA-hydrofoils and a circular cylinder in free stream, for which the numerical results are compared with numerical works of other researchers. Good agreement is observed. The effects of AC parameter, artificial viscosity and dissipation factor, and local preconditioning coefficient on convergence rate and solution accuracy are tested by computing flow over the NACA0012 hydrofoil. In addition, some important design criteria of a preconditioner, such as stiffness reduction, hyperbolicity, symmetrisability, accuracy preservation for M → 0, and M-property have been examined analytically.  相似文献   

15.
A three‐dimensional (3‐D) numerical method for solving the Navier–Stokes equations with a standard k–ε turbulence model is presented. In order to couple pressure with velocity directly, the pressure is divided into hydrostatic and hydrodynamic parts and the artificial compressibility method (ACM) is employed for the hydrodynamic pressure. By introducing a pseudo‐time derivative of the hydrodynamic pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from elliptic‐parabolic to hyperbolic‐parabolic equations. In this paper, a third‐order monotone upstream‐centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU‐SGS) method. This newly developed numerical method is validated against experimental data with good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, a novel Mach‐uniform preconditioning method is developed for the solution of Euler equations at low subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, in the present method, the conservation of energy equation is preconditioned, which enforces the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. Despite most preconditioners, the proposed Mach‐uniform preconditioning method does not have a singularity point at zero Mach number. The preconditioned system of equations preserves the strong conservation form of Euler equations for compressible flows and recovers the artificial compressibility equations in the case of zero Mach number. A two‐dimensional Euler solver is developed for validation and performance evaluation of the present formulation for a wide range of Mach number flows. The validation cases studied show the convergence acceleration, stability, and accuracy of the present Mach‐uniform preconditioner in comparison to the non‐preconditioned compressible flow solutions. The convergence acceleration obtained with the present formulation is similar to those of the well‐known preconditioned system of equations for low subsonic flows and to those of the artificial compressibility method for incompressible flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth‐order compact finite‐difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible viscous flows from very low to high Reynolds numbers is investigated through the simulation of different 2‐dimensional benchmark problems, and the results obtained are compared with the existing analytical, numerical, and experimental data. A sensitivity analysis is also performed to evaluate the effects of the size of the computational domain and other numerical parameters on the accuracy and performance of the solution algorithm. The present solution procedure is also extended to 3 dimensions and applied for computing the incompressible flow over a sphere. Indications are that the application of the preconditioning in the solution algorithm together with the high‐order discretization method in the generalized curvilinear coordinates provides an accurate and robust solution method for simulating the incompressible flows over practical geometries in a wide range of Reynolds numbers including the creeping flows.  相似文献   

18.
A numerical method has been developed to solve the steady and unsteady incompressible Navier-Stokes equations in a two-dimensional, curvilinear coordinate system. The solution procedure is based on the method of artificial compressibility and uses a third-order flux-difference splitting upwind differencing scheme for convective terms and second-order center difference for viscous terms. A time-accurate scheme for unsteady incompressible flows is achieved by using an implicit real time discretization and a dual-time approach, which introduces pseudo-unsteady terms into both the mass conservation equation and momentum equations. An efficient fully implicit algorithm LU-SGS, which was originally derived for the compressible Eulur and Navier-Stokes equations by Jameson and Toon [1], is developed for the pseudo-compressibility formulation of the two dimensional incompressible Navier-Stokes equations for both steady and unsteady flows. A variety of computed results are presented to validate the present scheme. Numerical solutions for steady flow in a square lid-driven cavity and over a backward facing step and for unsteady flow in a square driven cavity with an oscillating lid and in a circular tube with a smooth expansion are respectively presented and compared with experimental data or other numerical results.  相似文献   

19.
高阶谱元区域分解算法求解定常方腔驱动流   总被引:2,自引:0,他引:2  
主要利用Jacobian-free的Newton-Krylov方法求解定常不可压缩Navier-Stokes方程,将基于高阶谱元法的区域分解Stokes算法的非定常时间推进步作为Newton迭代的预处理,回避了传统Newton方法Jacobian矩阵的显式装配,节省了程序内存,同时降低了Newton迭代线性系统的条件数,且没有非线性对流项的隐式求解,大大加快了收敛速度。对有分析解的Kovasznay流动的计算结果表明,本高阶谱元法在空间上有指数收敛的谱精度,且对定常解的Newton迭代是二次收敛的。本文模拟了二维方腔顶盖一致速度驱动流,同基准解符合得很好,表明本文方法是准确可靠的。本文还考虑了Re=800时方腔顶盖正弦速度驱动流,除得到已知的一个稳定对称解和一对稳定非对称解外,还获得了一对新的不稳定的非对称解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号