首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
宋亚勤  张元冲 《力学学报》2006,38(4):480-487
运用具有一个热松弛时间的广义热黏弹性理论,研究了处于均布磁场中的二维磁热黏弹 性问题. 运用Laplace变换(对时间变量)和Fourier变换(对于一个空间变量),得到了变 换域内场量的精确表达式,并把结果应用到表面受到坡形加热的半空间问题. 应用 数值逆变换得到了时间-空间域内场量的解,对丙烯酸塑料 给出场量的响应图. 并把运用广义热黏弹性理论所得的结果与传统热黏弹性理 论及热弹性理论下的结果进行了比较.  相似文献   

2.
在具有两个热松弛时间的广义热弹性理论下, 研究了处于定常磁场中的均布各向同性黏弹性半空间中, 由以均匀速度运动的线热源引起的瞬态波问题. 通过引入黏弹性向量势和热黏弹性标量势,问题退化为求解3个偏微分方程. 运用Laplace变换(对时间变量)和Fourier变换(对一个空间变量), 得到了变换域内应力和位移的解析表达式. 采用级数展开法, 得到了边界位移在小时间范围内的近似解, 给出了解的近似范围, 同时还研究了两种特例:(1)热源静止不动, (2)不考虑热松弛时间的影响. 最后对于丙烯酸塑料介质给出了数值结果.  相似文献   

3.
运用无能量耗散的热弹性GN理论研究了受到移动内热源的半空间问题.通过势函数法使问题 转化成一组偏微分方程,采用Laplace变换和Fourier变换法得到问题在变换域内表面位移 精确解. 运用级数展开法得到在小时间范围内表面位移的近似解.给出近似解的适用范围,同时给出热 源固定不动和非耦合理论下问题的解.并对铜介质进行了数值计算.  相似文献   

4.
基于Laplace变换及特征值法,推导并给出了分数阶广义热弹性理论下中空柱内表面作用有热冲击情况的解析解,通过Laplace数值逆变换法求解得到了位移场、温度场、应力场的分布规律。结果表明:特征值法能准确给出Laplace域内方程组的解;分数阶参数对温度场和应力场有较大影响,对位移场影响较小。作为广义热弹性理论的一种推广,在处理热传导问题时,通过分数阶广义热弹性理论进行研究更科学、全面。  相似文献   

5.
本文综合应用无网格方法(EFGM)、线性粘弹性与弹性力学之间的对应原理,Laplace变换和逆变换等方法求解了拟静态平面弹性和粘弹性力学问题。首先,利用Laplace变换和逆变换推导了平面问题的粘弹性本构关系,建立了拟静态粘弹性平面问题的边值问题;其次,利用粘弹性与弹性力学之间的对应原理得到了Laplace变换域中平面问题的基本方程,在Laplace变换域中建立了相应的泛函,并得到了用无网格方法离散的控制方程;同时,求解了几个拟静态弹性和粘弹性平面问题,给出了它们的表达式和数值结果;最后,采用Laplace逆变换和数值逆变换,得到了粘弹性力学平面问题在物理空间中的解,并比较了由解析解和无网格数值方法所得到的数值结果,可以看到它们是非常吻合的。说明本文方法的正确性和有效性。  相似文献   

6.
本文应用边界单元法对基础振动的动力响应进行了数值求解。结构的弹性动力微分方程在通过Laplace积分变换后,可以得到弹性动力的基本边界积分方程。然后在变换空间内划分边界单元进行数值求解。最后通过Laplace的数值逆变换求得时间域内的动力响应值。文中对刚性的动力基础,在简谐荷载的作用下,对于不同频率、不同压缩层厚度和基础埋深等动力响应进行了计算与探讨。  相似文献   

7.
考虑损伤的粘弹性梁的纯弯曲   总被引:2,自引:0,他引:2  
根据粘弹性损伤理论,分析了带损伤粘弹性矩形梁在受纯弯曲时损伤对应力的影响,得到了在Laplace变换域内损伤场和应力场的分布.利用Laplace数值逆变换,分别得到了损伤弹性梁和损伤粘弹性梁的最大应力和最大损伤值,分析了材料的粘性对梁内应力和损伤的影响。  相似文献   

8.
为了探讨无限弹性土体内圆柱形洞室在突加反平面冲击荷载作用下的瞬态响应,利用Laplace变换及围道积分逆变换,得到土体位移和应力的一般解析表达式,并给出了数值解。在时域内分析了无限弹性土体内圆柱形孔洞在轴向荷载作用下的动力响应,并将计算结果与采用拉普拉斯数值反变换得到的结果以及静力情况下的结果作了比较。研究结果显示:波到达后,该点土体的应力和位移均瞬间增大,随后慢慢减小,并逐渐趋于静力值;波向外发散传播,并沿半径方向衰减,衰减速度比静力情况的应力衰减慢。  相似文献   

9.
单向纤维复合材料粘弹性性能预测   总被引:2,自引:0,他引:2  
建立了基于均匀化理论的单向纤维复合材料粘弹性性能预测方法。对单向纤维增强复合材料粘弹性问题的控制方程进行Laplace变换,在像空间中利用均匀化理论建立宏观松弛模量的Laplace变换与微结构描述参数以及变换参数间的关系。用Prony级数模拟松弛模量随变换参数的变化形式,并根据像空间中一系列变换参数对应的松弛模量的数值,采用函数拟合技术确定Prony级数的形式,从而确定用显示形式表示的松弛模量的Laplace变换随变换参数的变化规律。对显式表达式的逆变换获得时间域内的松弛模量。该方法利用拟合函数的逆变换避开了复杂的数值Laplace逆变换,使单向纤维增强复合材料的粘弹性性能的确定变得容易。文中给出了单向纤维复合材料松弛模量的数值预测结果并同有限元法模拟试验的结果对比,验证了预测结果的准确性以及本文方法的有效性。  相似文献   

10.
通过建立考虑热渗效应和热流固耦合效应的饱和土体固结方程,研究了无限长圆柱热固结问题. 利用Fourier 和Laplace 变换及其逆变换,给出了热固结问题的解析解;然后对空间内无限长圆柱形热源问题进行研究,得到非等温条件下柱体周围饱和土体温度、孔隙水压力的近似解,并总结其规律,分析了热渗系数、固结系数对温度作用下土体固结的影响.  相似文献   

11.
A model of the equations of generalized magneto-thermoelasticity in a perfectly conducting medium is given. The formulation is applied to generalizations, Lord–Shulman theory with one relaxation time and the Green–Lindsay theory with two relaxation times, as well as to the coupled theory.Laplace transforms and Fourier transforms techniques are used to get the solution. The resulting formulation is used to solve a specific two-dimensional problem. The inverses of Fourier transforms are obtained analytically.Laplace transforms are obtained using the complex inversion formula of the transform together with Fourier expansion techniques.Numerical results for the temperature distribution, thermal stress and displacement components are represented graphically. A comparison was made with the results predicted by the three theories.  相似文献   

12.
直接有限元法求解广义磁热弹二维旋转问题   总被引:1,自引:0,他引:1  
为了验证直接有限元法求解广义磁热弹耦合旋转问题的有效性及准确性,该文基于Lord和Shulman(L-S)广义热弹性理论,采用直接有限元方法,求解了置于磁场中的旋转半无限大体受热冲击作用的动态响应问题.文中给出了L-S型广义磁热弹耦合旋转问题的控制方程,建立了L-S型广义磁热弹旋转问题的虚位移原理,推导得到了相应的有限...  相似文献   

13.
基于Lord和Shulman广义热弹性理论,研究了热、电可导的半无限大体电磁热弹耦合的二维问题。半无限大体受热和外加恒定磁场的作用,文中建立了电磁热弹性耦合的控制方程,利用正则模态法求解得到了所考虑物理量的解析解,并用图形反映了各物理量的分布规律,从分布图上可以看出,介质中出现了电磁热弹耦合效应,各物理量的非零值仅在一个有限的区域内。  相似文献   

14.
A model of the equations of a generalized thermoelasticity (GT) with relaxation times for a saturated porous medium is given in this article. The formulation can be applied to the GT theories: Lord–Shulman theory, Green–Lindsay theory, and Coupled theory for the porous medium. A two-dimensional thermoelastic problem that is subjected to a time-dependent thermal/mechanical source is investigated with the model of the generalized porous thermoelasticity. By using the Laplace transform and the Fourier transform technique, solutions for the displacement, temperature, pore pressure, and stresses are obtained with a semi-analytical approach in the transform domain. Numerical results are also performed for portraying the nature of variations of the field variables. In addition, comparisons are presented with the corresponding four theories.  相似文献   

15.
Hany H. Sherief  S. E. Khader 《Meccanica》2013,48(10):2511-2523
In this work we study wave propagation for a problem of an infinitely long solid conducting circular cylinder whose lateral surface is traction free and subjected to known surrounding temperatures in the presence of a uniform magnetic field in the direction of the axis. The problem is in the context of generalized magneto-thermo-elasticity theory with one relaxation time. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Wave propagation in the elastic medium and in the free space, bounding it, is investigated.  相似文献   

16.
The model of one-dimensional equations of the two-temperature generalized magneto-thermoelasticity theory with two relaxation times in a perfect electric conducting medium is established. The state space approach developed in Ezzat (Can J. Phys. Rev. 86(11):1241–1250, 2008) is adopted for the solution of one-dimensional problems. The resulting formulation together with the Laplace transform techniques are applied to a specific problem of a half-space subjected to thermal shock and traction-free surface. The inversion of the Laplace transforms is carried out using a numerical approach. Some comparisons have been shown in figures to estimate the effects of the temperature discrepancy and the applied magnetic field.  相似文献   

17.
In this paper, we constructed the equations of generalized magneto-thermoelasticity in a perfectly conducting medium. The formulation is applied to generalizations, the Lord–Shulman theory with one relaxation time, and the Green–Lindsay theory with two relaxation times, as well as to the coupled theory. The material of the cylinder is supposed to be nonhomogeneous isotropic both mechanically and thermally. The problem has been solved numerically using a finite element method. Numerical results for the temperature distribution, displacement, radial stress, and hoop stress are represented graphically. The results indicate that the effects of nonhomogeneity, magnetic field, and thermal relaxation times are very pronounced. In the absence of the magnetic field or relaxation times, our results reduce to those of generalized thermoelasticity and/or classical dynamical thermoelasticity, respectively. Results carried out in this paper can be used to design various nonhomogeneous magneto-thermoelastic elements under magnetothermal load to meet special engineering requirements. An erratum to this article can be found at  相似文献   

18.
This paper presents a numerical method, a transmission matrix method, for the wave propagation in viscoelastic stratified saturated porous media. The wave propagation in saturated media, based on Biot theory, is a coupled problem. In this stratified three-dimensional model we do the Laplace transform for the time variable and the Fourier transform for the horizontal space coordinate. The original problem is transformed into ordinary differential equations with six independent unknown variables, which are only the function of the coordinate of depth. Thus, we get a transmission matrix of the wave problem for each layer. In the process of solution we use numerical method to calculate the eigenvalues and the eigenvectors of the transmission matrices. In the first step of the solution process we can obtain the wave field in the transformed space. The fast Fourier transform (FFT) method is used to do the inverse Laplace and the inverse Fourier transforms to get the solution in the time space. The detailed formulae are derived and some numerical examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号