首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
倪玉山  王华滔 《力学季刊》2005,26(3):366-369
本文采用准连续介质多尺度方法,分析了面心立方(fcc)晶体铝阶梯孪晶界在不同尺寸情况下(试件尺寸长高比从1:1到8:1)受剪切作用的晶界变形。了解在不同尺寸下,晶界结构位错的成核过程,得到了大试件比值与小试件比值下作用力与应变的关系曲线及不同试件尺寸下应变能的变化曲线。其中随着试件比值的增加,作用力在应变比较小的时候变化情况相似,但当应变达到3%以后,呈现出明显的不同;应变能随试件长高比的增大而减小,各个试件在各自不同的加载阶段,应变能变化趋势同作用力变化趋势相一致。本计算揭示了不同尺寸下阶梯孪晶界在剪切作用下的微观机理,证实其尺寸效应性质。  相似文献   

2.
Ni/聚氨酯纳米复合涂层的制备及其摩擦学性能研究   总被引:13,自引:3,他引:13  
用超声化学方法制备了纳米Ni微粒,并在此基础上制备了Ni/聚氨酯纳米复合涂层,用X射线衍射仪和透射电子显微镜表征了纳米Ni微粒的结构和形貌以及纳米复合涂层中Ni微粒的分布;用球—盘摩擦磨损试验机评价了Ni/聚氨酯纳米复合涂层的摩擦磨损性能.结果表明:纳米Ni微粒平均品粒尺寸为10nm;纳米Ni微粒均匀分布在Ni/聚氨酯纳米复合涂层中,其颗粒尺寸约为50nm;Ni/聚氨酯纳米复合涂层的摩擦学性能明显优于聚氨酯涂层.  相似文献   

3.
徐波  康国政 《力学学报》2021,53(3):802-812
通过建立考虑两个马氏体变体的二维相场模型,对梯度纳米晶镍钛(NiTi)合金系统的超弹性、单程和应力辅助双程形状记忆过程进行了模拟和预测.模拟结果显示: 在梯度纳米晶NiTi合金的超弹性过程中,较粗晶粒的区域保留了传统粗晶的马氏体相变和逆相变特征,即局部马氏体带的形核-扩展和缩减-消失, 而随着晶粒尺寸的减小,细晶粒区域表现为均匀相变的特点, 即无局部马氏体带产生; 此外,在超弹性和形状记忆过程中,马氏体相变和重取向都首先在较粗晶粒区域开始并逐步向细晶粒区域传播,而逆相变则相反.马氏体相变和重取向的逐步扩展使梯度纳米晶NiTi合金的应力-应变和应变-温度曲线呈现出“硬化状”,其可归因于纳米多晶NiTi合金中马氏体相变对晶粒尺寸的依赖性,即随着晶粒尺寸的减小, 相变或重取向壁垒逐渐增大,马氏体相变或重取向的形核、扩展越来越困难. 可见,梯度纳米晶结构具有比传统均匀晶粒尺寸NiTi合金更宽的相变应力区间、重取向应力区间和相变温度区间,可显著提高该合金非弹性变形的可控性.   相似文献   

4.
基于亚微米、纳米晶粒组织塑性变形过程中多种变形机制(位错机制、扩散机制及晶界滑动机制)共存,建立了理论模型,用于定量研究亚微米、纳米晶粒组织的塑性变形行为.以铜为模型材料,计算分析了晶粒尺度、应变率以及温度对亚微米、纳米晶粒组织塑性变形行为的影响.结果表明:相比粗晶铜,亚微米晶铜表现出明显的应变率敏感性,并且应变率敏感系数随晶粒尺度及变形速率的减小而增大;同时,增大变形速率或降低变形温度都能提高材料的应变硬化能力,延缓颈缩发生,进而提高材料的延性.计算分析结果与实验报道吻合.  相似文献   

5.
为了推进超细晶D6A钢在半穿甲战斗部壳体上的应用,研究了动态加载下其宏观力学行为和细观变形机理。运用旋转盘式Hopkinson拉杆技术,开展了超细晶D6A低合金钢(平均晶粒尺寸为510 nm)的动态拉伸实验,获得了不同应变率(500~1000 s?1)下超细晶钢的应力-应变曲线。运用TEM观测微观形貌,从细观层次研究了高应变率拉伸作用下超细晶钢的动态力学特性。结果表明,超细晶D6A钢具有较高的动态拉伸强度和良好的延展性。并且,晶粒细化和纳米析出相(渗碳体)是超细晶钢同时拥有高强度和较好韧性的重要因素;在动态拉伸过程中析出的大量纳米级渗碳体,与高密度晶界共同作用限制了位错运动,从而产生额外的塑性变形抗力,有效提升了超细晶钢的强度;在塑性变形阶段超细晶钢出现的明显应力下降现象,是可动位错密度增高的结果。  相似文献   

6.
分子动力学模拟纳米镍单晶的表面效应   总被引:2,自引:2,他引:0  
对单晶镍纳米丝、纳米薄膜零温准静态拉伸破坏过程进行了分子动力学模拟.模拟表明表面效应对单晶纳米材料的原子运动及整体力学行为有显著影响.自由表面增加纳米材料的塑性、降低其强度,影响纳米材料的变形机制.受表面效应的作用,纳米镍丝强度与弹性模量均低于纳米镍薄膜.纳米薄膜的断裂接近脆性断裂,断裂强度符合Griffith理想晶体脆断理论;纳米镍丝在断裂过程中表现出微弱塑性.  相似文献   

7.
纳米丝应变率效应的分子动力学模拟   总被引:3,自引:2,他引:3  
采用分子动力学模拟了零温时不同应变率作用下纳米丝的拉伸力学行为.计算结果表明在缺乏热激活软化机制条件下,纳米丝应变率效应呈现出与宏观应变率试验结果相一致的特征.纳米丝在不同的应变率范围具有不同的变形机制.在应变率不敏感区和敏感区,纳米丝主要以位错运动作为塑性变形机制;在应变率突变区,纳米丝通过局部原子混乱区的持续扩展乃至整体结构的非晶化作为塑性变形机制.  相似文献   

8.
纳晶金属的力学行为   总被引:5,自引:0,他引:5  
王宏涛  杨卫 《力学进展》2004,34(3):314-326
纳晶金属特指晶粒尺寸在($1 \sim100)$\,nm块体金属材料,其在力、热、声、电、磁等方面有着潜在应用,对它的制备、表征和模拟是材料科学及相关领域的重要前沿.由于纳晶金属结构简单,影响性能的因素相对单一,因而对结构与性能之间关系的理论研究具有深刻的意义.纳晶金属三维细观拓扑结构与常规多晶体类似,但由于晶粒尺寸减小,晶界原子体积比增加,因此呈现出与粗晶金属不同的性质,并且当微观物理过程的特征尺度大于晶粒尺寸时,与其对应的性质也将受到晶粒或者晶界的调制作用.本文从制备、力学性能和塑性变形机制3个方面介绍了纳晶金属力学的部分最新进展,并讨论了结构特征与力学性能之间的关系.   相似文献   

9.
含球形孔洞双晶铜单向拉伸性能的分子动力学模拟   总被引:1,自引:0,他引:1  
采用分子动力学方法模拟了在单向拉伸载荷作用下含孔洞双晶铜晶体的力学行为,研究了晶粒内部孔洞和晶界孔洞对晶体力学行为的影响。结果表明,孔洞可以显著降低双晶体的弹性模量和屈服应力。对于晶粒内部关于晶界对称的孔洞,随着孔间距的增大,晶体弹性模量和屈服应力都有明显的提高;当保持孔间距不变而改变孔半径时,随着孔体积的不断增大,晶体弹性模量和屈服应力又都呈现出递减趋势。对于晶界上的孔洞,孔洞形状对晶体拉伸性能有显著影响,并且随着孔半径的增大,晶体弹性模量和屈服应力呈现出递减趋势,如果保持孔洞总体积恒定而依次增加孔洞数量,则晶体弹性模量和屈服应力逐渐减小。  相似文献   

10.
摘要:针对纳米晶体材料,研究了单轴拉伸载荷作用下纳米晶体铝中的裂纹与裂纹尖端发射的位错所形成的滑移面之间的相互作用。通过分布位错法,将裂纹和滑移面等效为均匀分布的连续位错,获得了裂纹面上应力场。并引入裂纹尖端的无位错区,研究了裂纹尖端无位错区对微裂纹的萌生和主裂扩展之间的影响。结果表明,不考虑裂纹尖端无位错区时,裂纹长度较短,会先在晶界处形成微裂纹,主裂纹较长时,主裂纹会直接穿晶扩展。滑移面与裂纹尖端夹角较大时,会增加裂纹尖端发射的位错个数,从而抑制主裂纹的扩展。考虑裂纹尖端无位错区时,无位错区先于晶界处出现微裂纹,通过主裂纹与微裂纹之间位错的相互发射,导致裂纹与尖端处微裂纹汇合,有效加速了主裂纹的扩展。  相似文献   

11.
Fracture of nanocrystalline metals with extremely small grain size is simulated in this paper by structural evolution. Two-dimensional scheme is formulated to study the competition between crack growth and blunting in nanocrystalline samples with edge cracks. The scheme couples the creep deformation induced by grain boundary (GB) mechanisms and the intergranular crack growth. The effects of material properties, initial configurations and applied loads are explored. Either the enhancement in diffusion mobility, or the deterrence in the grain boundary damage, would blunt the crack and decelerate its growth, and vice versa. The simulations agree with the analytical predictions as modified from that of Yang and Yang [2008. Brittle versus ductile transition of nanocrystalline metal. Int. J. Solids Struct. 45, 3897-3907]. Upon the suppression of dislocation activities, it is validated that the brittle versus ductile transition of nanocrystals is controlled by the development of grain boundary-dominated creep versus grain boundary decohesion. Further simulations found that either decreasing the grain sizes or increasing the dispersion of grain sizes would blunt the growing cracks.  相似文献   

12.
This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse Hall-Petch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel.  相似文献   

13.
Strong size effects have been experimentally observed when microstructural features approach the geometric dimensions of the sample. In this work experimental investigations and discrete dislocation analyses of plastic deformation in metallic thin films have been performed. Columnar grains representative of the film microstructure are here considered. Simulations are based on the assumptions that sources are scarcely available in geometrically confined systems and nucleation sites are mainly located at grain boundaries. Especially, we investigated the influence on the mesoscopic constitutive response of the two characteristic length scales, i.e., film thickness and grain size. The simulated plastic response qualitatively reproduces the experimentally observed size effects while the main deformation mechanisms appear to be in agreement with TEM analyses of tested samples. A new interpretation of size scale plasticity is here proposed based on the probability of activating grain boundary dislocation sources. Moreover, the key role of a parameter such as the grain aspect ratio is highlighted. Finally, the unloading behavior has been investigated and a strong size dependent Bauschinger effect has been found. An interpretation of these phenomena is proposed based on the analysis of the back stress distribution within the samples.  相似文献   

14.
We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model.  相似文献   

15.
Numerical simulations are used to investigate the competing grain boundary and dislocation mediated deformation mechanisms in nanocrystalline Ni with grain sizes in the range 4-32 nm. We present a 3D phase field model that tracks the evolution of individual dislocations and grain boundaries. Our model shows that the transition from Hall-Petch to inverse Hall-Petch as the grain size is reduced cannot be characterized only by the grain size, but it is also affected by the grain boundary energetics. We find that the grain size corresponding to the maximum yield stress (the transition from Hall-Petch strengthening with decreasing grain size to inverse Hall-Petch) decreases with increasing grain boundary energy. Interestingly, we find that for grain boundaries with high cohesive energy the Hall-Petch maximum is not observed for grains in the range 4-32 nm.  相似文献   

16.
The brittle versus ductile transition for conventional metals is dictated by the competition between dislocation emission and cleavage. For nanocrystalline metals with grain size below 25 nm, however, dislocation activities are suppressed and the classic theory fails to apply. In this paper, one of the competing mechanisms that control the brittle versus ductile transition of nanocrystalline metals is found to be the grain boundary dominated creep deformation versus the grain boundary decohesion. A model is proposed to quantify the crack propagation in nanocrystalline metals. The effects of material properties, initial configuration and applied loads on the property of crack propagation are addressed. It is concluded that either the increases in the initial crack length, the applied load and the grain boundary damage, or the deterrence in creep deformation, accelerate the crack propagation, and vice versa.  相似文献   

17.
Nanoindentation experiments have shown that microstructural inhomogeneities across the surface of gold thin films lead to position-dependent nanoindentation behavior [Phys. Rev. B (2002), to be submitted]. The rationale for such behavior was based on the availability of dislocation sources at the grain boundary for initiating plasticity. In order to verify or refute this theory, a computational approach has been pursued. Here, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented. First, the principles of the EAM are given, and a comparison is made between atomistic simulations and continuum models for elastic deformation. Then, the mechanism of dislocation nucleation in single crystalline gold is analyzed, and the effects of elastic anisotropy are considered. Finally, a systematic study of the indentation response in the proximity of a high angle, high sigma (low symmetry) grain boundary is presented; indentation behavior is simulated for varying indenter positions relative to the boundary. The results indicate that high angle grain boundaries are a ready source of dislocations in indentation-induced deformation.  相似文献   

18.
We present a model in this paper for predicting the inverse Hall–Petch phenomenon in nanocrystalline (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which includes dislocation glide mechanism, Coble creep and Nabarro–Herring creep. However the deformation of grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally, the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress–strain curve of the pure copper are investigated. The obtained results are compared with relevant experimental data in the literature.  相似文献   

19.
In Part I of this set of two papers, a model of mesoscopic plasticity is developed for studying initial-boundary value problems of small scale plasticity. Here we make qualitative, finite element method-based computational predictions of the theory. We demonstrate size effects and the development of strong inhomogeneity in simple shearing of plastically constrained grains. Non-locality in elastic straining leading to a strong Bauschinger effect is analyzed. Low shear strain boundary layers in constrained simple shearing of infinite layers of polycrystalline materials are not predicted by the model, and we justify the result based on an examination of the no-dislocation-flow boundary condition. The time-dependent, spatially homogeneous, simple shearing solution of PMFDM is studied numerically. The computational results and an analysis of continuous dependence with respect to initial data of solutions for a model linear problem point to the need for a nonlinear study of a stability transition of the homogeneous solution with decreasing grain size and increasing applied deformation. The continuous-dependence analysis also points to a possible mechanism for the development of spatial inhomogeneity in the initial stages of deformation in lower-order gradient plasticity theory. Results from thermal cycling of small scale beams/films with different degrees of constraint to plastic flow are presented showing size effects and reciprocal-film-thickness scaling of dislocation density boundary layer width. Qualitative similarities with results from discrete dislocation analyses are noted where possible.We discuss the convergence of approximate solutions with mesh refinement and its implications for the prediction of dislocation microstructure development, motivated by the notion of measure-valued solutions to conservation laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号