首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Synthetic open-cell foams have a complex microstructure consisting of an interconnected network of cells resulting from the foaming process. The cells are irregular polyhedra with anywhere from 9 to 17 faces in nearly monodisperse foams. The material is concentrated in the nearly straight ligaments and in the nodes where they intersect. The mechanical properties of such foams are governed by their microstructure and by the properties of the base material. In this study micro-computed X-ray tomography is used to develop 3D images of the morphology of polyester urethane and Duocel aluminum foams with different average cell sizes. The images are used to establish statistically the cell size and ligament length distributions, material distributions along the ligaments, the geometry of the nodes and cell anisotropy. The measurements are then used to build finite element foam models of increasing complexity that are used to estimate the elastic moduli. In the most idealized model the microstructure is represented as a regular Kelvin cell. The most realistic models are based on Surface Evolver simulations of random soap froth with N3 cells in spatially periodic domains. In all models the cells are elongated in one direction, the ligaments are straight but have a nonuniform cross sectional area distribution and are modeled as shear deformable beams. With this input both the Kelvin cell models and the larger random foam models are shown to predict the elastic moduli with good accuracy but the random foams are 5–10% stiffer.  相似文献   

2.
Based on the elongated Kelvin obtained to investigate the tensile behavior Kelvin model's periodicity and symmetry in model, a simplified periodic structural cell is of anisotropic open-cell elastic foams due to the whole space. The half-strut element and elastic deflection theory are used to analyze the tensile response as done in the previous studies. This study produces theoretical expressions for the tensile stress-strain curve in the rise and transverse directions. In addition, the theoretical results are examined with finite element simulation using an existing formula. The results indicate that the theoretical analysis agrees with the finite element simulation when the strain is not too high, and the present model is better. At the same time, the anisotropy ratio has a significant effect on the mechanical properties of foams. As the anisotropy ratio increases, the tensile stress is improved in the rising direction but drops in the transverse direction under the same strain.  相似文献   

3.
An understanding of the mechanical properties of solid foams facilitates effective use of such materials, which are often deployed in load-bearing applications such as impact absorbers, cushioning and sandwich structures. This study is an experimental investigation that focuses on the deformation response of rigid polyurethane foam to tension. Microstructural features such as the size and geometry of constituent cells and the struts that define the cell edges, as well as their stiffness and tensile strength, are examined. The nature of cell deformation and fracture are identified through microscopy and the associated micromechanics analyzed. Results show that the cells are elongated and thus the foam exhibits anisotropic properties. Flexure of the struts that define the cell edges is the primary mechanism governing deformation and failure. Information on the mechanical, microstructural and deformation characteristics elicited through this investigation will facilitate formulation of idealized cell-based models to account for the mechanical response of rigid polymeric foams.  相似文献   

4.
An anisotropic compressible plasticity model is incorporated into the framework of the micromorphic continuum theory in order to describe some size effects observed in ductile nickel foams. This continuum model reproduces the fact that the presence of a machined hole in a foam plate does not affect its mechanical response when the hole size becomes comparable to the cell size of the material. Finite element simulations are compared to strain field measurements in nickel foam plates with a machined hole for different hole sizes, in order to identify the characteristic length of the model. Based on a simple ductile damage law, the model is then shown to be able to account for the strong anisotropy of the initiation of crack propagation in central crack panels made of nickel foams under mode I loading conditions.  相似文献   

5.
Based on the elongated Kelvin model, the effect of microstructure on the uniaxial strength asymmetry of open-cell foams is investigated. The results indicate that this asymmetry depends on the relative density, the solid material, the cell morphology, and the strut geometry of open-cell foams. Even though the solid material has the same tensile and compressive strength, the tensile and compressive strength of open-cell foams with asymmetrical sectional struts are still different. In addition, with the increasing degree of anisotropy, the uniaxial strength as well as the strength asymmetry increases in the rise direction but reduces in the transverse direction. Moreover, the plastic collapse ratio between two directions is verified to depend mainly on the cell morphology. The predicted results are compared with Gibson and Ashby''s theoretical results as well as the experimental data reported in the literature, which validates that the elongated Kelvin model is accurate in explaining the strength asymmetry presented in realistic open-cell foams.  相似文献   

6.
In this paper, finite element method based micromechanical analysis is used to understand the fracture behavior of functionally graded foams. The finite element analysis uses a micro-mechanical model in conjunction with a macro-mechanical model in order to relate the stress intensity factor to the stresses in the struts of the foam. The stress intensity factor at the crack tip of the macro-mechanical model can be evaluated using either the J-contour integral or the stresses in the singularity-dominated zone. The fracture toughness is evaluated for various crack positions and length within the functionally graded foam. Then the relationship between the fracture toughness of the graded foam and the local density at the crack tip is studied. Convergence tests for both macro-mechanical and micro-mechanical model analysis were conducted in order to maintain adequate accuracy with reasonable computational time. Fracture toughness of homogenous foams and functionally graded foams for various cases are presented as a function of relative density. This study indicates that the fracture toughness of functionally graded foams mainly depends on the relative density at the crack-tip.  相似文献   

7.
This article introduces a mesoscopic formulation for modeling the dynamic response of visco-elastic, open-cell solid foams. The effective material response is obtained by enforcing on a representative 3D unit cell the principle of minimum action for dissipative systems. The resulting model accounts explicitly for the foam topology, the elastic and viscous properties of the cell wall, and the inertial effects arising from non-affine motion within the cells. The microinertial effects become significant in retarding the foam collapse during exceedingly high strain-rate loading. As an application example, a heterogenous case of compressive deformation at high strain rate is simulated utilizing the present model as a constitutive update in a non-linear finite element analysis code. This FEM simulation shows the ability of the model to capture the progressive foam collapse during the dynamic compression as observed in experimental studies. Using the microscopic model, the inertial and viscous strain-rate effects are investigated through the foam density, viscosity, and relative density. Based on the physics incorporated into the local cell model, we provide insight into the physical mechanisms responsible for the experimentally observed strain-rate effects on the behavior of dynamically loaded foam materials.  相似文献   

8.
Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the <100> direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N3 cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216, 512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5–10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress–strain response of the aluminum base material.  相似文献   

9.
Based on a rigid-plastic material model that obeys the von Mises yield criterion, the plastic behavior of foams with an open-celled structure is studied in this paper using a single unit cell. An approximate continuum plasticity model is developed within the framework of the upper bound theorem of plasticity to describe the yield behavior of foams. The microscopic velocity fields are derived for the unit cell, which satisfy the incompressibility and the kinematic boundary conditions, and expressed in macroscopic rate of deformation. From the microscopic velocity fields, a macroscopic yield function is developed for foams under multi-axial stresses and includes the effects of the hydrostatic stress due to the void presence and growth. The dependency of the derived yield surfaces of foams on their relative densities is studied. The plastic behavior of foams is also studied numerically using the finite element method. The newly developed plasticity model is compared with the finite element analysis results and other available foam models and then correlated with the finite element results.  相似文献   

10.
复合泡沫塑料力学行为的研究综述   总被引:8,自引:0,他引:8  
卢子兴 《力学进展》2004,34(3):341-348
复合泡沫塑料是一种重要的防护材料,它在国防工业和民用工业各部门均有许多重要的应用,对这类材料的力学行为进行研究具有重要的学术价值和应用前景.本文对复合泡沫塑料力学行为的研究文献进行了综述.首先,对复合泡沫塑料力学行为研究的早期工作进行了简介.然后,重点介绍了复合泡沫塑料力学行为研究的最新进展,其中也包括作者近期在该领域开展的一些工作;对复合泡沫塑料进行了静、动态压缩实验和细观加载实验,研究了材料的宏观变形规律和细观失效机制;在理论研究方面,探讨了复合泡沫塑料的能量吸收和缓冲特性,从宏、细观力学分析出发研究了复合泡沫塑料有关力学性能的理论预测问题;还利用计算机和通用软件对高密度复合泡沫塑料进行了有限元分析,研究了高密度复合泡沫塑料的失效行为.最后,给出对该领域研究工作的一些展望.   相似文献   

11.
Metal foams are increasingly used for energy absorption especially in lightweight structures and to resist blast and impact loads. This requires an understanding of the dynamic response of these materials for modelling purposes. As a supplement to Tan et al., 2005a, Tan et al., 2005b, hereinafter referred to as TL for brevity, this paper provides experimental data for the dynamic mechanical properties of open-cell Duocel® foams having a three-dimensional (3D) distribution of cells. These confirm significant enhancement of the foam’s compressive strength, accompanied by changes in their deformation pattern in certain loading régimes, particularly what has come to be described as the ‘shock’ régime by Zheng et al. (2012). This paper examines experimentally, in a similar fashion as TL, how the structural response of the individual cell walls is affected by cell-shape anisotropy at the cell (meso)-scale and how this, in turn, alters the pattern of cell crushing and the dynamic, mechanical properties. The distinctive role of cell microinertia and ‘shock’ formation are discussed in relation to the mechanical properties measured for these 3D cylindrical specimens. For consistency the same procedures described in TL are used. The features identified are shown to be consistent with those observed in finite-element simulations of two-dimensional (2D) honeycombs as estimated by the one-dimensional (1D) steady-shock theory summarised in TL. The different deformation patterns that develop in the various loading régimes are categorised according to the compression rate/impact speed. Critical values of impact velocity, corresponding to the transition from one pattern to the other, are quantified and predictive formulae for the compressive uniaxial strengths in the directions of two of the principal axes of the material in each loading régime are derived and discussed. The accuracy of the predictive formula in TL is shown to critically depend on the ‘densification strain’ of the foam specimens. This parameter and the discussion that follows could assist the formulation and validation of alternative theoretical/computational models on the dynamic deformation of such materials.  相似文献   

12.
Ubiquitous in nature and finding applications in engineering systems, cellular solids are an increasingly important class of materials. Foams are an important subclass of cellular solids with applications as packing materials and energy absorbers due to their unique properties. A better understanding of foam mechanical properties and their dependence on microstructural details would facilitate manufacture of tailored materials and development of constitutive models for their bulk response. Numerical simulation of these materials, while offering great promise toward furthering understanding, has also served to convincingly demonstrate the inherent complexity and associated modeling challenges.The large range of deformations which foams are subjected to in routine engineering applications is a fundamental source of complication in modeling the details of foam deformation on the scale of foam struts. It requires accurate handling of large material deformations and complex contact mechanics, both well established numerical challenges. A further complication is the replication of complex foam microstructure geometry in numerical simulations. Here various advantages of certain particle methods, in particular their compatibility with the determination of three-dimensional geometry via X-ray microtomography, are exploited to simulate the compression of “real” foam microstructures into densification. With attention paid to representative volume element size, predictions are made regarding bulk response, dynamic effects, and deformed microstructural character, for real polymeric, open-cell foams. These predictions include a negative Poisson's ratio in the stress plateau, and increased difficulty in removing residual porosity during densification.  相似文献   

13.
14.
This paper assesses the sensitivity of cyclic plasticity to microstructure morphology by examining and comparing the microplastic ratcheting behavior of different idealized microstructures (square, hexagonal, tessellated, and digitized from experimental data). This analysis demonstrates the sensitivity of computational accuracy to the various approximations in microstructural representation. The methodology used to perform this study relies on a coupling between microstructural characterization, mechanical testing and numerical simulations to investigate the influence of the microstructure on the purely tensile uniaxial microplastic ratcheting behavior of pure nickel polycrystals. The morphology and deformation behavior of polycrystals were characterized using electron back-scatter diffraction (EBSD), while a finite element model (FEM) of crystal plasticity was used in a computational framework. The predicted cyclic behavior is compared to experimental results both at the macroscopic and microstructural scales. The stress–strain response is less sensitive to the details of the microstructural representation than might be expected with all representations displaying similar macroscopic constitutive response. However, the details of the plastic strain distribution at the microstructural scale and the related estimations of damage mechanics vary substantially from one microstructural representation to another.  相似文献   

15.
负梯度闭孔泡沫金属的力学性能分析   总被引:1,自引:0,他引:1  
运用三维Voronoi技术生成闭孔梯度泡沫模型,结合有限元分析方法模拟负梯度闭孔泡沫金属在不同冲击速度下的力学行为。结果表明,随着冲击速度的提高,得到了与均匀泡沫一样的三种变形模式:准静态模式,过渡模式和冲击模式。通过对名义应力应变曲线和变形模式的研究,提出了一种新的定义局部密实化应变的方法,并研究了相对密度和密度梯度对它的影响。分别建立了相对密度和密度梯度与冲击速度的变形模式图。通过引入密实化因子,确定了三种变形模式对应的临界冲击速度。最后讨论了不同冲击速度下,密度梯度大小对泡沫材料能量吸收能力的影响。结果表明,在高速冲击的变形初期,密度梯度的绝对值越大,泡沫材料的能量吸收能力越强。  相似文献   

16.
参照层状密度梯度泡沫模型实现方法,利用3D-Voronoi技术设计了新型径向密度梯度泡沫模型,并用有限元软件,对它在不同冲击载荷下的力学行为进行数值模拟。研究冲击速度、密度梯度和平均相对密度对金属泡沫冲击端、支撑端应力和能量吸收能力的影响,发现:径向正梯度泡沫与层状正、负梯度泡沫相比,其两端的应力值均较小,可同时保护冲击端、支撑端物体;径向负梯度泡沫两端应力变化幅度较小,能够保证物体受力稳定;几种泡沫金属的能量吸收能力在不同冲击速度下发生交替变化。对于径向梯度泡沫,能量吸收能力对密度梯度大小不敏感,对梯度方向敏感,径向负梯度泡沫的能量吸收能力始终大于径向正梯度泡沫;平均相对密度越大,径向正、负梯度泡沫两端应力越大、吸能效果越好。  相似文献   

17.
胡平 《力学学报》1998,30(3):354-362
给出一种可描述预延伸各向异性特性的背应力张量三维表达式,引入大变形弹塑性有限元驱动应力法,结合BPA8 链细观分子网络模型,模拟了预延伸各向异性非晶聚合物材料平面应变拉伸变形局部化力学行为.详细讨论了预延伸比(InitialDrawingRatio;IDR)和预延伸方向(InitialDrawingDirection;IDD)对变形抗力、颈缩规律、剪切带方向以及试件中心部位链延伸比的影响.  相似文献   

18.
关于泡沫塑料各向异性模型的修正   总被引:2,自引:0,他引:2  
本文研究了开孔泡沫塑料的力学各向异性问题。在已有模型的基础上,结合扫描电镜的分析结果提出了对Kanakkanat模型和Huber-Gibson模型的修正。这种修正反映了开孔泡沫塑料支柱的横向尺寸比对泡沫塑料各向异性性质的影响  相似文献   

19.
不同应变率下泡沫铝的形变和力学性能   总被引:3,自引:0,他引:3  
对低密度泡沫铝在不同变形率下的形变和力学性能进行了系统的试验研究。结果表明:(1)沿剪切方向骨架首先塌陷,即变形的局部化是低应变率下块体泡沫铝的主要变形特征;(2)在不同应变率下泡沫铝表现出体积应变基本上随工程应变呈线性变化,在低应变率下泊松比随轴向应变呈幂次关系增加,但在高应变率下泊松比随塑性应变增加,从一峰值降低并趋于稳定;(3)低应变率下泡沫铝材料塑性变形均匀,而高应变率下剪切变形较大;(4)泡沫铝材料的强度对应变率不很明显,但随塑性应变增加,它的率敏感性增加。  相似文献   

20.
This paper describes the application of a coupled crystal plasticity based microstructural model with an anisotropic yield criterion to compute a 3D yield surface of a textured aluminum sheet (continuous cast AA5754 aluminum sheet). Both the in-plane and out-of-plane deformation characteristics of the sheet material have been generated from the measured initial texture and the uniaxial tensile curve along the rolling direction of the sheet by employing a rate-dependent crystal plasticity model. It is shown that the stress–strain curves and R-value distribution in all orientations of the sheet surface can be modeled accurately by crystal plasticity if a “finite element per grain” unit cell model is used that accounts for non-uniform deformation as well as grain interactions. In particular, the polycrystal calculation using the Bassani and Wu (1991) single crystal hardening law and experimental electron backscatter data as input has been shown to be accurate enough to substitute experimental data by crystal plasticity data for calibration of macroscopic yield functions. The macroscopic anisotropic yield criterion CPB06ex2 (Plunkett et al., 2008) has been calibrated using the results of the polycrystal calculations and the experimental data from mechanical tests. The coupled model is validated by comparing its predictions with the anisotropy in the experimental yield stress ratio and strain ratios at 15% tensile deformation. The biaxial section of the 3D yield surface calculated directly by crystal plasticity model and that predicted by the phenomenological model calibrated with experimental and crystal plasticity data are also compared. The good agreement shows the strength of the approach. Although in this paper, the Plunkett et al. (2008) yield function is used, the proposed methodology is general and can be applied to any yield function. The results presented here represent a robust demonstration of implementing microscale crystal plasticity simulation with measured texture data and hardening laws in macroscale yield criterion simulations in an accurate manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号