首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Functionally graded syntactic foam sheets are developed by dispersing microballoons in epoxy for studying dynamic fracture behavior under low velocity impact loading. The volume fraction of microballoons is graded linearly over the width of the sheets. The mode-I crack initiation and growth behaviors are studied using reflection coherent gradient sensing technique and high-speed photography in samples with crack on the compliant and stiff sides and oriented along the compositional gradient. Crack growth along the gradient in each case shows sudden acceleration followed by steady state growth and deceleration during the window of observation. In both cases, the crack accelerations are similar while crack decelerations show differences. The dynamic stress intensity factor history prior to crack initiation in each case shows a rapid increase at different rates with the crack on the compliant side of the graded sheet experiencing higher rate of loading relative to the one with the crack on the stiffer side. Post-crack initiation stress intensity factor histories suggest increasing fracture toughness with crack growth in the graded sample with the crack on the compliant side while a decreasing trend is seen when the crack is on the stiffer side.Optical measurements are supplemented by finite element simulations for studying crack tip constraint effects on fracture behavior of graded foam sheets. Computed plane strain constraints in graded configurations are essentially identical to the homogeneous counterpart and the computed stress intensity factors obtained from plane stress elasto-dynamic analyses of the graded foams correlate well with the experimental measurements prior to crack initiation. The computed T-stress histories however, show an earlier loss of negative crack tip constraint in case of the graded foam sample with a crack on the compliant side. This correlates well with the higher crack tip loading rate and earlier crack initiation suggesting a possible role of in-plane constraint on fracture of graded foam. The coincidence of the time rate of change of in-plane constraint parameter becoming stationary close to experimentally observed crack initiation times are noted.  相似文献   

2.
针对组分材料体积含量任意分布的黏弹性功能梯度材料裂纹问题建立有限元分析途径. 通过Laplace变换,将黏弹性问题转化到象空间中求解,基于反映材料非均匀的梯度单元和裂纹尖端奇异特性的奇异单元计算象空间中的位移、应力和应变场,应用虚拟裂纹闭合方法得到应变能释放率,分别由应力和应变能释放率确定应力强度因子. 给出这些断裂参量在物理空间和象空间之间的对应关系,由数值逆变换求出其在物理空间的相应值. 文中分析两端均匀受拉的黏弹性边裂纹板条,首先针对松弛模量表示为空间函数和时间函数乘积的特殊梯度材料进行计算,结合对应原理验证方法的有效性. 然后分析组分材料体积含量具有任意梯度分布的情形,由Mori-Tanaka方法预测象空间中的等效松弛模量. 计算结果表明,蠕变加载条件下,应变能释放率随时间增加,其增大程度与黏弹性组分材料体积含量相关. 由于梯度材料的非均匀黏弹性性质,产生应力重新分布,导致应力强度因子随时间变化,其变化范围与组分材料的体积含量分布方式有关.  相似文献   

3.
功能梯度材料的黏弹性断裂问题   总被引:2,自引:2,他引:0  
功能梯度材料(FGM)是一种不同于传统复合材料的新型工程复合材料 [1], 国内外关于FGM的断裂力学方面的研究发展非常迅速. 关于FGM静态裂纹问题,学者们研究了不同类型裂纹尖端场的应力强度因子 [2-5], 探讨了有限长裂纹在不用载荷作用下的传播等问题. 而关于动态裂纹问题,也已经取得很大成就 [6-9]. FGM一个很重要的应用是高温结构材料,在强大的热环境中,很多材料都呈现出黏弹性. 因此,研究FGM的黏弹性断裂力学非常具有实际价值.对此,众多研究 [10-14]提出不同的分析模型,并在不同受载条件,通过理论计算,分析了黏弹性裂纹尖端场的力学 行为.本文考查了功能梯度材料板条中界面裂纹垂直于梯度方向时的黏弹性断裂问题,首先利用有限元法求解线弹性功能梯度材料板条的裂纹尖端场,然后根据黏弹性的对应性原理,求解出黏弹性功能梯度材料板条裂纹问题的应力场强度因子.   相似文献   

4.
The stress field near the tip of a finite angle sharp notch is singular. However, unlike a crack, the order of the singularity at the notch tip is less than one-half. Under tensile loading, such a singularity is characterized by a generalized stress intensity factor which is analogous to the mode I stress intensity factor used in fracture mechanics, but which has order less than one-half. By using a cohesive zone model for a notional crack emanating from the notch tip, we relate the critical value of the generalized stress intensity factor to the fracture toughness. The results show that this relation depends not only on the notch angle, but also on the maximum stress of the cohesive zone model. As expected the dependence on that maximum stress vanishes as the notch angle approaches zero. The results of this analysis compare very well with a numerical (finite element) analysis in the literature. For mixed-mode loading the limits of applicability of using a mode I failure criterion are explored.  相似文献   

5.
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared.  相似文献   

6.
参照层状密度梯度泡沫模型实现方法,利用3D-Voronoi技术设计了新型径向密度梯度泡沫模型,并用有限元软件,对它在不同冲击载荷下的力学行为进行数值模拟。研究冲击速度、密度梯度和平均相对密度对金属泡沫冲击端、支撑端应力和能量吸收能力的影响,发现:径向正梯度泡沫与层状正、负梯度泡沫相比,其两端的应力值均较小,可同时保护冲击端、支撑端物体;径向负梯度泡沫两端应力变化幅度较小,能够保证物体受力稳定;几种泡沫金属的能量吸收能力在不同冲击速度下发生交替变化。对于径向梯度泡沫,能量吸收能力对密度梯度大小不敏感,对梯度方向敏感,径向负梯度泡沫的能量吸收能力始终大于径向正梯度泡沫;平均相对密度越大,径向正、负梯度泡沫两端应力越大、吸能效果越好。  相似文献   

7.
8.
A three-dimensional enriched finite-element methodology is presented to compute stress intensity factors for three-dimensional cracks contained in functionally graded materials (FGMs). A general-purpose 3D finite-element based fracture analysis program, FRAC3D, is enhanced to include this capability. First, using available solutions from the literature, comparisons have been made in terms of stresses under different loading conditions, such as uniform tensile, bending and thermal loads. Mesh refinement studies are also performed. The fracture solutions are obtained for edge cracks in an FGM strip and surface cracks in a finite-thickness FGM plate and compared with existing solutions in the literature. Further analyses are performed to study the behavior of stress intensity factor near the free surface where crack front terminates. It is shown that three-dimensional enriched finite elements provide accurate and efficient fracture solutions for three-dimensional cracks contained in functionally graded materials.  相似文献   

9.
40Cr材料动态起裂韧性KId()的实验测试   总被引:4,自引:0,他引:4  
描述了利用Hopkinson压杆技术加载三点弯曲试样测试40Cr,材料动态起裂韧性KId()的试验方法。试样上的动态载荷历程由Hopkinson杆直接测得,并分别代入动态有限元程序及近似公式求得动态应力强度因子历史;由贴在试样裂尖附近的应变片确定起裂时间,最终确定起裂时的动态应力强度因子值,即动态起裂韧性KId()。试验结果表明:利用Hopkinson压杆技术加载三点弯曲试样测试材料动态起裂韧性的方法是可行的,起裂时,动态有限元的位移法、应力法及近似公式法求得的动态应力强度因子值比较吻合;在本文的载荷速率下,40Cr材料动态起裂韧性KId()与准静态裂韧性KId()相比,降低了约28%。  相似文献   

10.
In this article,a direct stress approach based on finite element analysis to determine the stress intensity fac-tor is improved.Firstly,by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack,we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity fac-tor,which is nearly equal to the stress intensity factor given by the asymptotic solution.Secondly,the crack problem is solved numerically by the finite element method.Depending on the modeling capability of the software,we designed an adaptive mesh model to simulate the stress singularity.Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corre-sponding crack problem.Therefore,the stress intensity factor may be calculated from the stress distribution in the appro-priate interval,with a high accuracy.  相似文献   

11.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

12.
正交各向异性功能梯度材料反平面裂纹尖端应力场   总被引:8,自引:2,他引:6  
采用积分变换-对偶积分方程方法,研究了正交各向异性功能梯度材料反平面裂纹问题,文中假定材料沿两个主轴方向的剪切模量成比例按双参数梯度模型变化,通过求解对偶积分程并考虑变形Bessel函数的渐特性,推导出了裂纹尖端应力场,最后考察了材料非均匀性及正交性对应力强度因子的影响。  相似文献   

13.
Mixed-mode fracture problems of orthotropic functionally graded materials (FGMs) are examined under mechanical and thermal loading conditions. In the case of mechanical loading, an embedded crack in an orthotropic FGM layer is considered. The crack is assumed to be loaded by arbitrary normal and shear tractions that are applied to its surfaces. An analytical solution based on the singular integral equations and a numerical approach based on the enriched finite elements are developed to evaluate the mixed-mode stress intensity factors and the energy release rate under the given mechanical loading conditions. The use of this dual approach methodology allowed the verifications of both methods leading to a highly accurate numerical predictive capability to assess the effects of material orthotropy and nonhomogeneity constants on the crack tip parameters. In the case of thermal loading, the response of periodic cracks in an orthotropic FGM layer subjected to transient thermal stresses is examined by means of the developed enriched finite element method. The results presented for the thermally loaded layer illustrate the influences of the material property gradation profiles and crack periodicity on the transient fracture mechanics parameters.  相似文献   

14.
Consider the thermal fracture problem of a functionally graded coating-substrate structure of finite thickness with a partially insulated interface crack subjected to thermal-mechanical supply. A new model is proposed that the heat conduction through the crack region occurs and the temperature drop across the crack surfaces is the result of the thermal resistance. For the first time, real fundamental solutions are derived for the fracture analysis of functionally graded materials. The complicated mixed boundary problems of equations of heat conduction and elasticity are converted analytically into singular integral equations, which are solved numerically. The asymptotic expressions with higher order terms for the singular integral kernels are considered to improve the accuracy and efficiency of the numerical integration. Explicit expressions of various failure modes including stress intensity factors, energy release rate and strain energy density, are provided. Numerical results are presented to illustrate the effects of non-homogeneity parameters and the dimensionless thermal resistance on the temperature distribution along the crack surfaces and extended crack line, the thermal stress intensity factors and minimum strain energy density.  相似文献   

15.
本文在虚裂纹模型中引入初裂强度因子的概念以研究混凝土结构的三维裂缝扩展。虚裂纹的扩展由裂纹尖端的初裂强度因子和虚裂纹所传递的软化应力共同控制。将软化应力分析曲线分段线性化进行模拟,这使问题得到很大程度的简化,同时又保证了解的必要精度。对所建立的有限元基本方程组建议了一次性的求解方法,可以不进行迭代,这既保持了解的稳定,又减轻了计算工作量。  相似文献   

16.
In this paper, the interaction of two collinear cracks in functionally graded materials subjected to a uniform anti-plane shear loading is investigated by means of nonlocal theory. The traditional concepts of the nonlocal theory are extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with the coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near the crack tips. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion in functionally graded materials. The magnitude of the finite stress field depends on the crack length, the distance between two cracks, the parameter describing the functionally graded materials and the lattice parameter of the materials.  相似文献   

17.
Consider two bonded functionally graded piezoelectric material (FGPM) with finite height. Each material contains an arbitrary oriented crack. The material properties are assumed in exponential forms in the direction normal to the interface. The crack surface condition is assumed to be electrically impermeable or permeable. Using the Fourier transform technique, the problem can be reduced to a system of singular integral equations, which are then solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor S and the energy release rate G. In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail. The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material.  相似文献   

18.
This paper presents a preliminary assessment and qualitative analysis on fracture criterion and crack growth in metal powder compact during the cold compaction process. Based on the fracture criterion of granular materials in compression, a displacement based finite element model has been developed to analyse fracture initiation and crack growth in metal powder compact. Approximate estimation of fracture toughness variation with relative density is established in order to provide the fracture parameter as compaction proceed. A single crack initiated from the boundary of a multi-level component made of iron powder is considered in this work. The finite element simulation of the crack propagation indicates that shear crack grows during the compaction process and propagates in the direction of higher shear stress and higher relative density. This also implies that the crack grows in the direction where the compaction pressure is much higher, which is in line with the conclusion made by previous researchers on shear crack growth in materials under compression. In agreement with reported work by previous researchers, high stress concentration and high density gradient at the inner corner in multi-level component results in fracture of the component during preparation.  相似文献   

19.
Thermo-electro-structural coupled analyses of crack arrest by Joule heating   总被引:2,自引:0,他引:2  
Using the finite element method, thermo-electro-structural coupled analyses of the cracked conducting plate under high electric current have been solved. The crack contact condition and temperature-dependent material properties are considered in this analysis. The crack tip temperature, electric current density factor, stress intensity factor and strain energy density factor are obtained for discussions. Due to high electric current density and Joule heating at the crack tip, a circular melting area may exist around the tip. After cooling, a circular void or hole may occur at the crack tip and the crack arrest is achieved. The crack tip temperature decreases when the crack contact area increases. The proper tensile load is necessary for making the crack open enough and causing high current density at the crack tip and associated crack arrest. On the other hand, the crack tip temperature increases with time by the increasing external current and Joule heating. The values of mode-I stress intensity factor and strain energy density factor decrease with time due to the thermal deformation around the crack tip. Because of the temperature-dependent resistivity, the variation of the electric current density factor is complicated. In addition, it is not easy to create a crack-arrest condition when the crack length relative to the plate width is too small.  相似文献   

20.
The fracture toughness of elastic-brittle 2D lattices is determined by the finite element method for three isotropic periodic topologies: the regular hexagonal honeycomb, the Kagome lattice and the regular triangular honeycomb. The dependence of mode I and mode II fracture toughness upon relative density is determined for each lattice, and the fracture envelope is obtained in combined mode I-mode II stress intensity factor space. Analytical estimates are also made for the dependence of mode I and mode II toughness upon relative density. The high nodal connectivity of the triangular grid ensures that it deforms predominantly by stretching of the constituent bars, while the hexagonal honeycomb deforms by bar bending. The Kagome microstructure deforms by bar stretching remote from the crack tip, and by a combination of bar bending and bar stretching within a characteristic elastic deformation zone near the crack tip. This elastic zone reduces the stress concentration at the crack tip in the Kagome lattice and leads to an elevated macroscopic toughness.Predictions are given for the tensile and shear strengths of a centre-cracked panel with microstructure given explicitly by each of the three topologies. The hexagonal and triangular honeycombs are flaw-sensitive, with a strength adequately predicted by linear elastic fracture mechanics (LEFM) for cracks spanning more than a few cells. In contrast, the Kagome microstructure is damage tolerant, and for cracks shorter than a transition length its tensile strength and shear strength are independent of crack length but are somewhat below the unnotched strength. At crack lengths exceeding the transition value, the strength decreases with increasing crack length in accordance with the LEFM estimate. This transition crack length scales with the parameter of bar length divided by relative density of the Kagome grid, and can be an order of magnitude greater than the cell size at low relative densities. Finally, the presence of a boundary layer is noted at the free edge of a crack-free Kagome grid loaded in tension and in shear. Deformation within this boundary layer is by a combination of bar bending and stretching whereas remote from the free edge the Kagome grid deforms by bar stretching (with a negligible contribution from bar bending). The edge boundary layer degrades both the macroscopic stiffness and strength of the Kagome plate. No such boundary layer is evident for the hexagonal and triangular honeycombs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号