首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
In this paper, finite element method based micromechanical analysis is used to understand the fracture behavior of functionally graded foams. The finite element analysis uses a micro-mechanical model in conjunction with a macro-mechanical model in order to relate the stress intensity factor to the stresses in the struts of the foam. The stress intensity factor at the crack tip of the macro-mechanical model can be evaluated using either the J-contour integral or the stresses in the singularity-dominated zone. The fracture toughness is evaluated for various crack positions and length within the functionally graded foam. Then the relationship between the fracture toughness of the graded foam and the local density at the crack tip is studied. Convergence tests for both macro-mechanical and micro-mechanical model analysis were conducted in order to maintain adequate accuracy with reasonable computational time. Fracture toughness of homogenous foams and functionally graded foams for various cases are presented as a function of relative density. This study indicates that the fracture toughness of functionally graded foams mainly depends on the relative density at the crack-tip.  相似文献   

2.
Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region.The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.  相似文献   

3.
Specimen size effects are a major cause of the unreliability of foam models in finite element codes. Here, the modified Arcan apparatus is used to investigate the biaxial yielding of ductile and brittle Al foams. This apparatus subjects a central section of a “butterfly-shaped” specimen to a uniform state of plane stress. The stresses have local maxima at the central section, thus ensuring that yielding occurs there. A yield envelope, which directly relates to the crushing process, can then be determined. Size effects are introduced when using conventional methods such as tri-axial or plate-shear tests. In such tests, averages of stress and strain are measured. These measures do not represent the actual yield event, because foam's internal structure is inhomogeneous and so is the deformation field. Strain localization and failure can occur at any weak layer of cells in the bulk. In this study, we have performed a series of biaxial tests on isotropic Alporas and anisotropic Hydro closed-cell Al foams of approximately equal densities. Alporas failed locally by a ductile phenomenon of progressive crushing of cells. It also possessed uniaxial strength asymmetry. Hydro specimens parallel and perpendicular to ‘foam rise’ were investigated. The Hydro foam developed a local, characteristic brittle crack at loads in the vicinity of the yield point. Phenomenological yield surfaces, which incorporate these features are obtained for the foams, and show dependence on both the deviatoric and hydrostatic stresses. We also provide expressions for the shear and hydrostatic strengths in terms of the uniaxial strengths. Finally, the size-independence of the yield surface is verified using the uniaxial compression of tapered specimens.  相似文献   

4.
In this article, the structural characterization of chemical vapor deposition (CVD) nickel metal foam is presented. Scanning electron microscope and post image processing were used to carefully analyze the surface of the nickel metal foams. Data on foam unit cell, ligament thickness, projected pore diameter, and averaged porosity was obtained. Unit cell and projected pore diameters of CVD nickel metal foam possess Gaussian-like distribution. Characteristics of pore structure and its effect on permeability in Darcian flow regime were analyzed. The relations between the permeability, pore size, and porosity are presented. Present and previous data are compared with these relations. Measurement results indicate that the permeability or the viscous conductivity of the CVD processed metal foam is affected not only by the pore size, and porosity but also by the ligament structure.  相似文献   

5.
This article presents results of the investigation of the fluid dynamic behavior in CVD processed nickel metal foams. An experimental facility was developed to measure the single-phase permeability in nickel metal foams in Darcian flow regime. Data on permeability values of seven different nickel foam samples was obtained. The pore sizes of the foam were obtained with scanning electron microscope. By defining friction factor and Reynolds number based on the permeability length scale a correlation was obtained for the foam permeability in Darcian flow regime. The result from this study was compared with the correlations reported by other researchers, and was found to be in good agreement.  相似文献   

6.
Model I quasi-static nonlinear fracture of aluminum foams is analyzed by considering the effect of microscopic heterogeneity. Firstly, a continuum constitutive model is adopted to account for the plastic compressibility of the metallic foams. The yield strain modeled by a two- parameter Weibull-type function is adopted in the constitutive model. Then, a modified cohesive zone model is established to characterize the fracture behavior of aluminum foams with a cohesive zone ahead of the initial crack. The tensile traction versus local crack opening displacement relation is employed to describe the softening characteristics of the material. And a Weibull statistical model for peak bridging stress within the fracture process zone is used for considering microscopic heterogeneity of aluminum foams. Lastly, the influence of stochastic parameters on the curve of stress-strain is given. Numerical examples are given to illustrate the numerical model presented in this paper and the effects of Weibull parameters and material properties on J-integral are discussed.  相似文献   

7.
Multiscale mass-spring models of carbon nanotube foams   总被引:2,自引:0,他引:2  
This article is concerned with the mechanical properties of dense, vertically aligned CNT foams subject to one-dimensional compressive loading. We develop a discrete model directly inspired by the micromechanical response reported experimentally for CNT foams, where infinitesimal portions of the tubes are represented by collections of uniform bi-stable springs. Under cyclic loading, the given model predicts an initial elastic deformation, a non-homogeneous buckling regime, and a densification response, accompanied by a hysteretic unloading path. We compute the dynamic dissipation of such a model through an analytic approach. The continuum limit of the microscopic spring chain defines a mesoscopic dissipative element (micro-meso transition) which represents a finite portion of the foam thickness. An upper-scale model formed by a chain of non-uniform mesoscopic springs is employed to describe the entire CNT foam. A numerical approximation illustrates the main features of the proposed multiscale approach. Available experimental results on the compressive response of CNT foams are fitted with excellent agreement.  相似文献   

8.
The cell morphology and mechanical behavior of open-cell polyurethane and nickel foams are investigated by means of combined 3D X-ray micro-tomography and large scale finite element simulations. Our quantitative 3D image analysis and finite element simulations demonstrate that the strongly anisotropic tensile behavior of nickel foams is due to the cell anisotropy induced by the deformation of PU precursor during the electroplating and heat treatment stages of nickel foam processing. In situ tensile tests on PU foams reveal that the initial main elongation axis of the cells evolves from the foam sheet normal direction to the rolling direction of the coils. Finite element simulations of the hyperelastic behavior of PU foams based on real cell morphology confirm the observation that cell struts do not experience significant elongation after 0.15 tensile straining, thus pointing out alternative deformation mechanisms like complex strut junctions deformation. The plastic behavior and the anisotropy of nickel foams are then satisfactorily retrieved from finite element simulations on a volume element containing eight cells with a detailed mesh of all the hollow struts and junctions. The experimental and computational strategy is considered as a first step toward optimization of process parameters to tailor anisotropy of cell shape and mechanical behavior for applications in batteries or Diesel particulate filtering.  相似文献   

9.
Recent experiments have evidenced the existence of a ductile fracture mode at the nanometer scale in Aluminosilicate glass. The present study is designed to check whether such a ductile mode is inherent to the amorphous nature of glass. Therefore, the slow crack advance is observed in real time via an Atomic Force Microscope in a minimal glass, amorphous Silica, under stress corrosion. In this case, the Crack propagation proceeds by the nucleation, growth and coalescence of damage cavities as in the Aluminosilicate glass, but the cavity size is significantly larger. We focus here on the kinematics of crack propagation by looking at the spatio-temporal evolution of both the tip of the main crack and the cavity ahead. It is shown that the velocity of the main crack tip is significantly lower than the one of the cavity edge toward the main crack tip, like in metallic alloys. Moreover, the velocities of the different fronts (main crack, frontward and backward cavity tips) at these nanometric scales is one order of magnitude smaller than the crack tip velocity at the continuum scale. This has important consequences for the modelling of stress corrosion, especially at ultra-slow crack propagation.  相似文献   

10.
采用原位观测的方法研究了脆性泡沫铝材料在压缩载荷下细观与宏观断裂破坏规律和吸能机理。针对多孔泡沫金属材料提出一种细观原位加载实验方法,采用特别设计与制备的试件,在S570扫描电镜下研究了特定胞孔在压缩过程中孔壁的失效顺序和破坏规律,并揭示了能量吸收的细观机理。对块体材料的宏观压缩实验表明,脆性泡沫铝是以多个断裂带的形式破坏。研究发现,孔壁缺陷和胞孔形态缺陷是诱发断裂带形成与发展的重要因素。依据尺寸效应对细观与宏观实验下泡沫铝的性能进行了比较。  相似文献   

11.
Based on a rigid-plastic material model that obeys the von Mises yield criterion, the plastic behavior of foams with an open-celled structure is studied in this paper using a single unit cell. An approximate continuum plasticity model is developed within the framework of the upper bound theorem of plasticity to describe the yield behavior of foams. The microscopic velocity fields are derived for the unit cell, which satisfy the incompressibility and the kinematic boundary conditions, and expressed in macroscopic rate of deformation. From the microscopic velocity fields, a macroscopic yield function is developed for foams under multi-axial stresses and includes the effects of the hydrostatic stress due to the void presence and growth. The dependency of the derived yield surfaces of foams on their relative densities is studied. The plastic behavior of foams is also studied numerically using the finite element method. The newly developed plasticity model is compared with the finite element analysis results and other available foam models and then correlated with the finite element results.  相似文献   

12.
Fracture mode of ductile solids can vary depending on the history of stress state the material experienced. For example, ductile plates under remote in-plane loading are often found to rupture in mode I or mixed mode I/III. The distinct crack patterns are observed in many different metals and alloys, but until now the underlying physical principles, though highly debated, remain unresolved. Here we show that the existing theories are not capable of capturing the mixed mode I/III due to a missing ingredient in the constitutive equations. We introduce an azimuthal dependent fracture envelope and illustrate that two competing fracture mechanisms, governed by the pressure and the Lode angle of the stress tensor, respectively, exist ahead of the crack tip. Using the continuum damage plasticity model, we demonstrate that the distinctive features of the two crack propagation modes in ductile plates can be reproduced using three dimensional finite element simulations. The magnitude of the tunneling effect and the apparent crack growth resistance are calculated and agree with experimental observations. The finite element mesh size dependences of the fracture mode and the apparent crack growth resistance are also investigated.  相似文献   

13.
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics (MD) simulations. An MD model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat Σ99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element—an atomistic analog to a continuum cohesive zone model element—the results from the MD simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion.  相似文献   

14.
基于实验和理论建模研究了白炭黑增强硅泡沫材料在γ辐照剂量范围为0~1000kGy作用后的单轴压缩力学行为。实验结果表明辐照导致硅泡沫出现明显硬化现象,初始杨氏模量和固定应变下应力幅值均随γ辐照剂量近似线性增加。辐照后硅泡沫泡孔结构完整,硅橡胶基体中高分子交联反应占主导,且交联密度随辐照剂量线性增大。基于实验分析结果,实现了Ogden Hyperfoam超弹本构模型参数与辐照剂量的关联。结果表明初始剪切模量参数与辐照剂量成线性关系,硬化指数和泊松比参数与辐照剂量无关。基于应力应变实验数据拟合得到模型参数,并与未参与拟合的实验数据对比,验证了模型的准确性,表明该模型能够表征宽辐照剂量范围内硅泡沫的压缩力学行为。  相似文献   

15.
基于实验和理论建模研究了白炭黑增强硅泡沫材料在γ辐照剂量范围为0~1000kGy作用后的单轴压缩力学行为。实验结果表明辐照导致硅泡沫出现明显硬化现象,初始杨氏模量和固定应变下应力幅值均随γ辐照剂量近似线性增加。辐照后硅泡沫泡孔结构完整,硅橡胶基体中高分子交联反应占主导,且交联密度随辐照剂量线性增大。基于实验分析结果,实现了Ogden Hyperfoam超弹本构模型参数与辐照剂量的关联。结果表明初始剪切模量参数与辐照剂量成线性关系,硬化指数和泊松比参数与辐照剂量无关。基于应力应变实验数据拟合得到模型参数,并与未参与拟合的实验数据对比,验证了模型的准确性,表明该模型能够表征宽辐照剂量范围内硅泡沫的压缩力学行为。  相似文献   

16.
This paper focuses on the development of an algorithm capable of generating morphologically-representative foam structures using the Representative Volume Element (RVE) approach. Stereology, a sampling method based on direct observations of the foam cross-sections, is used to characterize the pore size and shape distributions. Using the morphology generation algorithm, the smallest RVEs corresponding to the numerically-convergent foam morphologies are calculated for different foam porosities. To validate the foam generation algorithm, the pore size and shape distributions of the numerically-generated foams are compared to those of the titanium foams manufactured by the space holder method.  相似文献   

17.
This paper summarizes our recent studies on modeling ductile fracture in structural materials using the mechanism-based concepts. We describe two numerical approaches to model the material failure process by void growth and coalescence. In the first approach, voids are considered explicitly and modeled using refined finite elements. In order to predict crack initiation and propagation, a void coalescence criterion is established by conducting a series of systematic finite element analyses of the void-containing, representative material volume (RMV) subjected to different macroscopic stress states and expressed as a function of the stress triaxiality ratio and the Lode angle. The discrete void approach provides a straightforward way for studying the effects of microstructure on fracture toughness. In the second approach, the void-containing material is considered as a homogenized continuum governed by porous plasticity models. This makes it possible to simulate large amount of crack extension because only one element is needed for a representative material volume. As an example, a numerical approach is proposed to predict ductile crack growth in thin panels of a 2024-T3 aluminum alloy, where a modified Gologanu–Leblond–Devaux model [Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Tech. 116, 290–297; Gologanu, M., Leblond, J.B., Perrin, G., Devaux, J., 1995. Recent extensions of Gurson’s model for porous ductile metals. In: Suquet, P. (Ed.) Continuum Micromechanics. Springer-Verlag, pp. 61–130] is used to describe the evolution of void shape and void volume fraction and the associated material softening, and the material failure criterion is calibrated using experimental data. The calibrated computational model successfully predicts crack extension in various fracture specimens, including the compact tension specimen, middle crack tension specimens, multi-site damage specimens and the pressurized cylindrical shell specimen.  相似文献   

18.
The quasicontinuum (QC) method is employed to simulate a nickel single crystal nano-plate with a mixed-mode crack. Atomic stresses near the crack tip are fitted according to the elastoplastic fracture mechanics equations. It is found that the atomic stress fields neighboring the crack tip are also singular and controlled by the atomic stress intensity factors. And then the critical energy release rates for brittle and ductile fracture are computed and compared in order to predict crack propagation or dislocation emission. Four possible slip directions at the crack tip are pointed out. Finally, the slip direction around the crack tip is determined by the shear stress and it is well consistent with the atomic pictures from the QC simulation.  相似文献   

19.
A model for the behavior of low-density, open-cell foam under compressive strain is proposed. Using this model, a tractable relationship between the normalized permeability and the applied strain is developed. An experimental study of the effect of strain on the permeability of open-cell polyurethane foams is presented. The experiments are performed using a Newtonian fluid in the fully laminar regime, where viscous forces are assumed to dominate. The model is found to describe the experimental data well and be independent of the foam cell size, the direction of flow with respect to the foam rise direction, and the properties of the saturating fluid. In a companion paper, the model for the permeability of open-cell foam is combined with Darcy’s law to give the contribution of viscous fluid flow to the stress–strain response of a reticulated foam under dynamic loading.  相似文献   

20.
Paper reports a result of analog experiments regarding the simulation of magma fragmentation. We filled a starch sirup foam, as an analog material, in a 117–240 mm long and a 50 mm diameter high pressure chamber and exposed it to a rapid decompression. The foam was prepared by mixing starch sirups of dynamic viscosities ranging from 5 to 1012 Pa· s at temperatures ranging from 293 to 343 K with nitrogen at 2.5 MPa gauge pressure. In ejecting high-pressure foams into a low-pressure chamber, diagnostics of foam’s fragmentation process were pressure measurment and high-speed video recording. Prior to decompression experiments, we examined visco-elastic properties of foam specimens by using a rheometer. The foam deformation under decompression was found to be axial–symmetrical, and strongly coupled with bubble growth and coalescence. These effects contributed even more efficiently to fragmentation processes than previous laboratory experiments using other analog materials. Fragment shapes varied widely depending on the temperature and water concentration of starch sirup foams, which proved that fragmentation process was governed by not only ductile deformation but also brittle failure, and determined by the degree of visco-elasticities of starch sirup foams.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号