首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
本文求解平面应变状态下磁电弹复合材料半平面和刚性导电导磁圆柱压头的二维微动接触问题。假设压头具有良好的导电导磁性,且表面电势和磁势是常数。微动接触依赖载荷的加载历史,所以首先求解单独的法向加载问题,然后在法向加载问题的基础上求解循环变化的切向加载问题。整个接触区可以分为内部的中心粘着区和两个外部的滑移区,其中滑移区满足Coulomb摩擦法则。利用Fourier积分变换,磁电弹半平面的微动接触问题将简化为耦合的Cauchy奇异积分方程组,然后数值离散为线性代数方程组,利用迭代法求解未知的粘着/滑移区尺寸、电荷分布、磁感应强度、法向接触压力和切向接触力。数值算例给出了摩擦系数、总电荷和总磁感应强度对各加载阶段的表面接触应力、电位移和磁感应强度的影响。  相似文献   

2.
热电材料可以将热能转化为电能,反之亦然,这一优良的性质将有助于研发更具成本效益的设备和器件。本文研究了刚性圆形压头作用在热电材料半平面的无摩擦接触问题。假定压头为电导体、热导体,且压头压入深度及与材料的接触区域宽度未知。首先求解电场和温度场,利用傅里叶变换得到了电势函数、温度、电流密度和能量通量的解析表达式。然后求解弹性场,利用积分变换和边界条件,将该热弹性接触问题转化为第一类奇异积分方程并数值求解。数值结果讨论了压头半径和热电载荷对法向接触应力、电流强度因子和能量通量强度因子的影响。结果表明,对于圆压头,热电材料的法向电流密度、法向能量通量在接触边缘表现出奇异性,而表面法向接触应力在接触边缘为零。本文建立的研究模型有助于更深层次的了解热电材料的接触行为。  相似文献   

3.
运用Hilbert核的奇异积分方程的数值解法研究具任意形状裂纹的各向同性弹性半平面在周期压头作用下的周期接触问题,将所考虑问题转化为第一型或第二型的奇异积分方程组.最后给出带垂直裂纹的半平面在光滑平底压头作用下的数值结果.令α→∞时,就得到非周期经典结果.  相似文献   

4.
边界元法求解三维摩擦接触问题,其中一个关键点在于如何确定滑移方向。即当出现相对滑移时,滑移方向如何确定。当前常采用的方法是,粘结点利用切向面力得到滑移方向,滑移点利用切向相对位移得到滑移方向。不过该方法难以保证收敛性。针对这一问题,本文采用滑移方向预测技术得到滑移方向。即以后出现相对滑移时,滑移方向采用预测技术中得到的滑移方向。由于摩擦接触问题和历史加载相关,本文采用增量法求解。不同摩擦系数下的数值结果都证明了本文算法的有效性和收敛性及滑移方向预测技术的有效性。  相似文献   

5.
本文研究一类粘着型界面裂纹的弹性波散射问题.文中利用积分变换和积分方程方法推导了确定这类问题的奇异积分方程组.采用围道积分技术和切比雪夫多项式展开技术,得到了待定系数的非线性代数方程组.最后本文给出裂纹尖端粘着区的大小和界面应力的数值结果.  相似文献   

6.
采用分子动力学与有限元耦合的多尺度方法,求解二维刚性圆柱表面压头与弹性平面的微/纳尺度粘着滑动接触问题,通过与全分子动力学模拟结果的比较验证了多尺度方法的有效性。对压头半径、滑动速度、下压深度以及是否考虑粘着效应等对滑动接触性能的影响进行了全面研究,通过不同条件下摩擦力及接触力分布的比较,揭示了上述各参数对粘着滑动接触...  相似文献   

7.
功能梯度材料涂层半空间的轴对称光滑接触问题   总被引:2,自引:0,他引:2  
求解了功能梯度材料涂层半空间的轴对称光滑接触问题,其中梯度层剪切模量按照线性变化,利用Hankel积分变换方法求解微分方程,将问题化为具有Cauchy型奇异核的积分方程.数值方法求解表明:功能梯度材料涂层半空间在刚性柱形压头和球形压头作用下,接触表面分布应力,接触半径以及最大压痕受材料梯度效应的影响较大.  相似文献   

8.
利用复变函数和奇异积分方程方法,求解反平面弹性中半平面边缘内分叉裂纹问题。提出了满足半平面边界自由的由分布位错密度表示的半平面中单裂纹的基本解,此基本解由主要部分和辅助部分组成。将半平面边缘内分叉裂纹问题看作是许多单裂纹问题的叠加,建立了以分布位错密度为未知函数的Cauchy型奇异积分方程组。然后,利用半开型积分法则求解奇异积分方程,得到了裂纹端处的应力强度因子。文中给出两个数值算例的计算结果。  相似文献   

9.
利用复变函数和Green函数法研究了无限半空间中双相介质界面附近圆形衬砌对SH波的散射与动应力集中问题。该问题的解答采用镜像法,首先构造出含有圆形衬砌的直角平面区域出平面问题的Green函数,然后利用“契合”技术,并根据界面处位移连续性条件将解答归结为具有弱奇异性的第一类Fredholm积分方程组的求解,结合散射波的衰减特性,直接离散该方程组,把积分方程组转化为线性代数方程组可得到该问题的数值结果。最后,通过算例分析了不同介质参数、几何参数和入射波时圆形衬砌界面的动应力集中情况。  相似文献   

10.
人股骨密质骨横断面的微动磨损特性研究   总被引:6,自引:1,他引:6  
采用配置外加体液恒温循环装置的高精密微动试验台研究了天然活性股骨密质骨/纯钛的微动磨损行为,探讨了不同位移幅值下摩擦系数随循环次数变化的规律.结果表明,在90N法向载荷下,随位移幅值增加,股骨密质骨的微动运行状态从部分滑移向完全滑移状态转变.当位移幅值较小时,接触表面变形处于弹性协调状态,损伤轻微.随着位移幅值的增加,接触表面变形逐步向弹、塑性变形以及严重塑性变形和粘着转变,微动损伤加剧.与此同时,密质骨试件微动磨痕深度随位移幅值的增加而增大,并同摩擦系数存在良好的对应关系.为了提高密质骨抵抗微动损伤的能力,有必要控制植入体/骨界面的微动幅度和降低摩擦系数.  相似文献   

11.
通过编制率相关有限元用户子程序,采用一个单胞模型研究了FCC晶体中孔洞在单晶及晶界的长大行为,分析了由于晶体取向及变形失配对孔洞长大和聚合的影响。研究结果表明:孔洞的形状和长大方向与晶体取向密切相关;晶界上孔洞的长大速度大于单晶中孔洞的长大速度;晶粒间的变形失配加速了晶界上孔洞的长大趋势,因而使材料易发生沿晶断裂,随着晶粒间取向因子差异的增加,孔洞越易沿着晶界长大。  相似文献   

12.
通过建立空洞长大和相互作用的3D模型,采用晶体塑性有限元模拟研究了FCC晶体表面空洞的长大和相互作用行为,分析了晶体取向和微空洞在表面的深度变化对表面空洞长大和相互作用的影响。模拟结果表明:晶体取向除了影响空洞形状和长大方向外,还会影响空洞长大速度;总体而言,在固定位移边界条件下硬取向晶粒表面的空洞长大和相互作用大于软取向。随着空洞在单晶体表面深度的增加,空洞周围的最大塑性变形增加,变形局部化更加严重,空洞长大速度增加。  相似文献   

13.
The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed in the distribution of slips and on the shape of the deformed voids for different void sizes. Furthermore, the orientation of the crystalline lattice is found to have a pronounced effect on the results, especially for the smaller void sizes.  相似文献   

14.
含与不含晶界空穴的双晶体蠕变行为研究   总被引:1,自引:1,他引:0  
基于晶体滑移理论,建立了各向异性镍基合金双晶体的蠕变本构模型和蠕变寿命预测模型,通过MARC用户子程序CRPLAW将上述本构模型进行了有限元实现,并对双晶体蠕变行为进行了计算分析,考虑了:(1)晶体取向的影响;(2)垂直、倾斜和平行于外载方向的三种位向晶界情况;(3)晶界处引进空间空穴的影响。结果表明,双晶体上特别是微空穴和晶界附近区域的蠕变应力应变呈现不同的变化规律,对此晶粒晶体取向和晶界位向有较大的影响;微空穴的存在削弱了双晶体的承载能力,显著地影响了双晶体蠕变持久寿命;相同条件下,垂直晶界对双晶体模型的蠕变损伤影响最为强烈,倾斜晶界次之,平行晶界最小;微空穴的生长与晶界位向和晶体取向有强烈的依赖关系,其中垂直晶界更有利于晶体滑移和微空穴生长。  相似文献   

15.
Void growth and coalescence in single crystals are investigated using crystal plasticity based 3D finite element calculations. A unit cell involving a single spherical void and fully periodic boundary conditions is deformed under constant macroscopic stress triaxiality. Simulations are performed for different values of the stress triaxiality, for different crystal orientations, and for low and high work-hardening capacity. Under low stress triaxiality, the void shape evolution, void growth, and strain at the onset of coalescence are strongly dependent on the crystal orientation, while under high stress triaxiality, only the void growth rate is affected by the crystal orientation. These effects lead to significant variations in the ductility defined as the strain at the onset of coalescence. An attempt is made to predict the onset of coalescence using two different versions of the Thomason void coalescence criterion, initially developed in the framework of isotropic perfect plasticity. The first version is based on a mean effective yield stress of the matrix and involves a fitting parameter to properly take into account material strain hardening. The second version of the Thomason criterion is based on a local value of the effective yield stress in the ligament between the voids, with no fitting parameter. The first version is accurate to within 20% relative error for most cases, and often more accurate. The second version provides the same level of accuracy except for one crystal orientation. Such a predictive coalescence criterion constitutes an important ingredient towards the development of a full constitutive model for porous single crystals.  相似文献   

16.
The fracture toughness of ductile materials depends upon the ability of the material to resist the growth of microscale voids near a crack tip. Mechanics analyses of the elastic–plastic deformation state around such voids typically assume the surrounding material to be isotropic. However, the voids exist predominantly within a single grain of a polycrystalline material, so it is necessary to account for the anisotropic nature of the surrounding material. In the present work, anisotropic slip line theory is employed to derive the stress and deformation state around a cylindrical void in a single crystal oriented so that plane strain conditions are admitted from three effective in-plane slip systems. The deformation state takes the form of angular sectors around the circumference of the void. Only one of the three effective slip systems is active within each sector. Each slip sector is further subdivided into smaller sectors inside of which it is possible to derive the stress state. Thus the theory predicts a highly heterogeneous stress and deformation state. In addition, it is shown that the in-plane pressure necessary to activate plastic deformation around a cylindrical void in an anisotropic material is significantly higher than that necessary for an isotropic material. Experiments and single crystal plasticity finite element simulations of cylindrical voids in single crystals, both of which exhibit a close correspondence to the analytical theory, are discussed in a companion paper.  相似文献   

17.
A crystallographic creep damage constitutive model is developed for nickel-base directionally solidified superalloys. The rates of material degradation and grain boundary void growth are considered. The governing parameters are determined from the creep test data of single crystals and directionally solidified superalloys with a crystallographic orientation. A finite element program is used to analyze the creep damage behavior of nickel-base directionally solidified superalloys for different crystallographic orientations. The results depend on the number of grains modelled and compare well with the experimental data.  相似文献   

18.
采用率相关晶体塑性模型,建立三维胞元计算模型,研究了晶粒取向和晶界对孔洞生长和聚合的影响.比较了不同晶粒取向的单晶和双晶体中孔洞的生长趋势,发现晶粒取向对孔洞生长方向,孔洞形状等有着显著的影响.  相似文献   

19.
Void growth and coalescence in fcc single crystals were studied using crystal plasticity under uniaxial and biaxial loading conditions and various orientations of the crystalline lattice. A 2D plane strain unit cell with one and two cylindrical voids was employed using three-dimensional 12 potentially active slip systems. The results were compared to five representative orientations of the tensile axis on the stereographic triangle. For uniaxial tension conditions, the void volume fraction increase under the applied load is strongly dependent on the crystallographic orientation with respect to the tensile axis. For some orientations of the tensile axis, such as [1 0 0] or [1 1 0], the voids exhibited a growth rate twice as fast compared with other orientations ([1 0 0], [2 1 1]). Void growth and coalescence simulations under uniaxial loading indicated that during deformation along some orientations with asymmetry of the slip systems, the voids experienced rotation and shape distortion, due mainly to lattice reorientation. Coalescence effects are shown to diminish the influence of lattice orientation on the void volume fraction increase, but noteworthy differences are still present. Under biaxial loading conditions, practically all differences in the void volume fraction for different orientations of the tensile axes during void growth vanish. These results lead to the conclusion that at microstructural length scales in regions under intense biaxiality/triaxiality conditions, such as crack tip or notched regions, the plastic anisotropy due to the initial lattice orientation has only a minor role in influencing the void growth rate. In such situations, void growth and coalescence are mainly determined by the stress triaxiality, the magnitude of accumulated strain, and the spatial localization of such plastic strains.  相似文献   

20.
Experimental results and finite element simulations of plastic deformation around a cylindrical void in single crystals are presented to compare with the analytical solutions in a companion paper: Cylindrical void in a rigid-ideally plastic single crystal I: Anisotropic slip line theory solution for face-centered cubic crystals [Kysar, J.W., Gan, Y.X., Mendez-Arzuza, G., 2005. Cylindrical void in a rigid-ideally plastic single crystal I: Anisotropic slip line theory solution for face-centered cubic crystals, International Journal of Plasticity, 21, 1481–1520]. In the first part of the present paper, the theoretical predictions of the stress and deformation field around a cylindrical void in face-centered cubic (FCC) single crystals are briefly reviewed. Secondly, electron backscatter diffraction results are presented to show the lattice rotation discontinuities at boundaries between regions of single slip around the void as predicted in the companion paper. In the third part of the paper, the finite element method has been employed to simulate the anisotropic plastic deformation behavior of FCC single crystals which contain cylindrical voids under plane strain condition. The results of the simulation are in good agreement with the prediction by the anisotropic slip line theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号