首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
GPS测姿系统较传统惯性导航系统具有成本低、安装方便、能快速输出三维姿态数据等优点,但其输出数据存在由于周跳引起的数据突变和不平滑等问题.为了解决这一问题,在GPS测姿系统中增加了数据滤波算法.通过使用平滑滤波、中值滤波、防脉冲干扰平均值滤波、递推平均值法等不同数字滤波算法对测姿数据进行实时处理、比对,得出一种适用于GPS测姿数据处理的方法.采用防脉冲干扰平均值滤波+递推平均值法结合的方法进行实时数据处理,即可以对周期性干扰有良好的抑制作用,平滑度高,灵敏度高,同时也消除了由于脉冲干扰引起的采样值的偏差.目前该方法已成功应用于测姿软件的数据处理中,并取得了良好的效果.  相似文献   

2.
介绍了移动测图技术及其系统组成,基于具体的车载移动测图系统,重点探讨了GPS和INS组成的组合定位测姿模块,给出了GPS/INS组合软件流程及解算过程。通过推导系统误差状态方程和量测方程,建立了GPS/INS位置、速度组合滤波模型,并结合野外车载实验数据,对来自GPS和INS的位置和姿态数据进行了组合数据处理,通过精度分析,论证了INS短时高精度的特点及其对GPS信息有益和必要的补充。针对陆地车载测图应用中GPS信号频繁中断,指出仍需增加传感器以辅助GPS/INS完成高精度的位置和姿态测定。  相似文献   

3.
为了研究一种适合船用的启动快、全天候、低成本、没有误差积累的测姿系统,根据船体甲板结构布局,设计了一套GPS测姿系统。系统采用4台双频GPS接收机,4天线棱形布局,艏艉基线约33 m,利用GPS载波相位测姿技术确定船舶姿态。海上动态试验时以惯导和光电经纬仪为数据比对基准进行精度分析。结果表明系统已基本达到了全时段测量的能力,其有效数据覆盖率可达94.8%以上,航向角系统误差小于18",纵摇角系统误差小于28",横摇角系统误差小于80"。系统已可作为大型船舶姿态测量的主要测量手段之一,同时由于其航向精度较高,可作为惯导系统航向校准的补充手段。  相似文献   

4.
船体变形的监测方法及其对航向姿态信息的修正   总被引:5,自引:0,他引:5  
分析了船体变形的原因、种类,以及船体变形对航姿信息的影响;介绍了监测船体变形的四种结构力学方法和包括惯性测量匹配法在内的三种船舶航行实时监测法,以及GPS姿态测量在船体变形监测中的应用。着重讨论了惯性测量匹配法测定船体变形技术在火控系统、舰载飞机和舰载导弹惯导系统传递对准、磁测量船、其它物理测量船等方面的应用。最后针对位于舰船的中心航姿系统和局部基准部位的陀螺和加速度计等测量部件的不同配置,详细给出了用惯性测量匹配法测定并消除船体变形影响的三种实施方案,比较了各方案的特点、计算过程和系统输出数据。这些方案对于在役舰船和现代舰船的船体变形监测和航向姿态修正具有借鉴作用。  相似文献   

5.
一种新的INS/GPS组合导航技术   总被引:16,自引:4,他引:16  
基于GPS测姿技术的发展,研究了以位置、速度和姿态信息作为观测量的INS/GPS组合导航系统的卡尔曼滤波算法。详细推导了这种组合方式的观测方程,并将该组合技术应用于某飞行器。仿真表明,增加姿态信息作为观测量可有效地提高系统导航参数的估计精度和速度。  相似文献   

6.
GPS测姿中载波相位差分技术的研究与实现   总被引:1,自引:0,他引:1  
从载体姿态测量精度的要求出发,介绍了GPS载波相位差分技术,在此基础上,以具体的测姿试验为例,重点研究与分析了载波相位双差解算的过程,给出了相应的数据处理结果,为今后进一步姿态解算方法奠定了基础。  相似文献   

7.
为了描述编队卫星中主从星的相对位置和姿态信息,提出了基于对偶四元数的编队卫星相对位姿测量算法。以双星编队飞行的位姿运动为主线,运用对偶四元数工具,充分发挥其能以最简洁的形式表示一般性刚体运动的优点,对卫星轨道和姿态进行分析并建立了对偶四元数位姿模型。同时设计类GPS测量技术来测量编队卫星的相对位置和姿态,该技术载波相位波长和伪码码元比GPS的更短,可获得更高精度的相对测量信号。由于状态方程和观测方程的非线性特征,使用UKF滤波来消除随机噪声对量测过程的干扰。实验结果表明,所设计的算法能够有效估计系统误差,卫星的位置误差和四元数误差收敛于零,验证了该算法的有效性。  相似文献   

8.
基于数字图像处理技术的惯导航向误差解算技术   总被引:2,自引:0,他引:2  
船载经纬仪是航天测量船专用光学测量设备,其重要功能就是通过测星校航向,并以此为基准对惯性导航设备进行校准.描述了经纬仪测星原理并分析了其易受天气因素影响的缺点,通过对上述问题的深入研究提出了一种新型的基于数字图像处理技术的测星方法.该方法通过采集经纬仪测星时的视频图像,并根据星体位置解算航向误差,极大程度提高了经纬仪测星能力,弥补其功能上的缺陷.通过对传统测星法、人工判读法和数字判读法的优缺点、误差分析和实际应用效果的比对,对该方法进行了准确的评估,得出了其数据精度高、满足任务需求、有效弥补经纬仪功能缺陷并提高测量船整体测控精度的结论,具有其独特的优势和利用价值,值得在测量船以及其它动态测量单元中普及和推广.  相似文献   

9.
航天测量船与陆基测控站在对航天器进行轨道跟踪测量中存在很大区别,陆基测控站是定点测控,定轨精度完全取决于无线电设备自身精度,而测量船是海基动态测控,定轨精度除受无线电设备自身精度影响,更大程度上受制于惯性导航系统(INS)提供的船姿船位(航向、船摇、位置)数据精度。测量船为提高船姿船位数据精度,使用了静电陀螺监控器(ESGM)与惯性导航设备(INS)、全球卫星导航系统(GNSS)相结合的组合导航系统。结合INS/ESGM/GNSS工作原理和测量船航天器定轨中船姿船位数据源的选择,将船姿船位数据精度对测量船定轨精度的影响进行了仿真,并通过无线电设备实测数据的事后数据处理对仿真结果进行了验证。研究结果表明,ESGM能够在很大程度上提高测量船航天器的定轨精度。  相似文献   

10.
光纤陀螺与GPS组合定姿技术在航天器上的应用研究   总被引:10,自引:0,他引:10  
在重量轻、功耗低和可靠性高等较高技术要求下,采用光纤陀螺与GPS组合定姿定轨技术,作为微小型航天器或舱外机动装置上高精度自主姿态确定系统,文中重点研究了光纤陀螺与GPS组合定姿在航天器定姿中的应用情况。  相似文献   

11.
通过对校飞数据处理方法及实测数据的分析,阐述了飞机姿态测量误差对测量船校飞精度的影响,并针对校飞飞机的姿态测量提出了新的方法。  相似文献   

12.
针对激光陀螺船体角形变测量,分析评估了两组激光陀螺组合体时间同步误差的影响,并提出了一种时间同步误差的在线估计算法.严格推导了考虑了时间同步误差的惯性姿态匹配方程,从方程可见,船体在波浪摇摆条件下时间同步误差将导致额外的Kalman滤波观测量波动误差,直接影响船体角形变测量精度.另一方面,基于新推导的惯性姿态匹配方程,在滤波状态中增加时间延迟变量,通过Kalman滤波能够在线估计时间延迟大小.基于实测远望船体姿态和角变形数据进行了仿真,仿真测试表明大的时间延迟将导致大的船体角形变测量误差,同时验证了时间延迟在线估计方法的有效性.  相似文献   

13.
针对船体静态角形变缓慢变化的特征,在Mochalov船体角形变理论和姿态匹配算法的基础上,提出了一种用角速度的一阶Markov过程来描述静态角形变缓慢变化行为的方法。考虑到静态形变角速度变化较慢、相关时间较长的实际情况,一阶Markov过程可进一步简化为随机游走过程。仿真结果表明,视准静态角形变为常量的Mochalov角形变模型无法跟踪准静态角形变的缓慢变化,精度较差;而新的形变模型不仅能够跟踪缓慢变化的准静态角形变,对于转舵等因素引起的短时大幅角形变也同样有效,总形变测量精度优于30″(RMS),这为激光陀螺船体形变测量技术进入工程应用打下了基础。  相似文献   

14.
分析了捷联惯性导航系统姿态解算中不可交换性误差产生原因,提出并分析了一种旋转矢量误差估计模型,并从该模型出发推导了几种高精度的捷联姿态算法,提出了由角速度提取角增量的梯形算法。以船舶为应用对象,进行了数字仿真和算法精度分析比较,结果表明:等效旋转矢量法和梯形算法可以提高系统的姿态解算精度。  相似文献   

15.
舰载武器惯导系统对准综述   总被引:10,自引:2,他引:10  
按照船上对准和飞行对准两条线路,概述了国内外舰载武器INS对准发展现状。分析和归纳了舰载武器INS船上对准所涉及的重要因素如测量匹配方法、机动方式、惯性传感器件误差、船体挠曲变形、杆臂效应及数据延时等,介绍了飞行对准中GPS、雷达辅助INS的模式和GPS/INS组合抗干扰技术,着重强调了影响舰载武器INS对准性能提高的主要因素并给出了解决这些问题的基本思路。最后,初步讨论了舰载武器INS对准研究发展趋势。  相似文献   

16.
基于长期变形、动态挠曲变形以及陀螺随机零偏的状态方程,构建了激光陀螺测量的惯性姿态匹配最优滤波器,可以实时地估计出船体变形角。针对实时估计的长期变形角具有偏置误差的问题,推导了惯性姿态匹配的误差方程,指出动态挠曲变形角与船体惯性姿态角之间具有长时间的交叉相关耦合作用导致了长期变形角估计具有偏置误差,并提出了对输入到最优滤波器的激光陀螺角增量进行自适应补偿的方法来抑制偏置误差。实验结果表明,补偿后俯仰角、横滚角和艏挠角的偏置误差均方根均小于5″,较补偿前降低均方根误差约为5″,该自适应补偿方法可有效地抑制偏置误差,提高惯性姿态匹配方法在船体变形测量应用中的有效性。  相似文献   

17.
一种新的捷联惯导系统初始对准方法   总被引:1,自引:0,他引:1  
提出了—种基于多天线GPS载波相位测量的捷联惯导系统静基座初始对准方法。给出了观测方程的详细推导过程,该观测方程中三个失准角均直接可观。最后给出了卡尔曼滤波仿真结果。结果表明,该方法极大地改善了捷联惯导系统静基座初始对准中方位失准角的估计收敛速度和精度。  相似文献   

18.
舰船平台上一种改进的传递对准方案设计与仿真   总被引:1,自引:0,他引:1  
为了提高舰船惯性导航系统在动基座下的传递对准的精度和快速性,针对舰船平台的应用特点,采用卡尔曼滤波器对主、子惯导的"速度加角速率"参数的误差量进行滤波估计并进行了算法设计。运用卡尔曼滤波器的平滑算法改善传递对准的精度。针对卡尔曼滤波器平滑算法会降低对准速度的缺点,在只损失一小部分精度的前提下,创新性的采用卡尔曼滤波器的降阶算法提高了对准速度。通过Matlab软件对卡尔曼滤波器算法、卡尔曼滤波器平滑算法和卡尔曼滤波器平滑加降阶算法的速度误差和姿态误差分别进行了仿真。仿真结果表明,"速度加角速率"匹配传递对准改进算法具有稳健的对准精度和快速性,有一定工程应用参考价值。  相似文献   

19.
This paper investigates the probability density function (PDF) of non-linear random ship roll motion using a previously developed path integration method. The mathematical model of ship rolling motion consists of a linear-plus-cubic damping and a non-linear restoring moment in the form of odd-order polynomials up to fifth-order terms. In the path integration method, the interpolation scheme is based on the Gauss–Legendre quadrature integration rule and the short-time transition probability density function is formulated by short-time Gaussian approximation. The present work extends the path integration method to the case of non-linear random ship roll motion. Different values of non-linearity coefficient and excitation intensity are used to examine the effectiveness of the path integration method. Numerical analysis shows that the results of the path integration method agree well with the simulation results, even in the tail region. The path integration method is effective and it is simply implemented in the examined cases. Due to the presence of non-linear damping terms and non-linear restoring moment terms, the PDFs of roll angle and angular velocity exhibit highly non-Gaussian behaviors.  相似文献   

20.
基于惯性测量单元的匹配滤波算法是测量船体变形的发展趋势,然而在实际航行中,船体变形模型参数是未知或存在不确定性,模型参数的这一特性对滤波估计结果影响较大。针对此问题,利用"速度+角速度"匹配算法分析了模型参数未知对滤波估计效果的影响,引入交互式多模型卡尔曼滤波方法,利用不同模型参数的似然函数进行概率分配。最后通过仿真对提出的方法进行了验证,结果表明,与传统卡尔曼滤波相比,估计精度提高了5%~10%,收敛时间提高了1倍,动态变形角的收敛时间在10 s以内,静态变形角的收敛时间在5s以内,提高了系统的环境适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号