首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode Ⅰ crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

2.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode I crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

3.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

4.
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode Ⅱ dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.  相似文献   

5.
All the stress components at a rapidly propagating crack-tip in elastic perfectly-plasticmaterial are the functions ofθonly.Making use of this condition and the equations ofsteady-state motion,plastic stress-strain relations,and Mises yield condition with Poissonratio,in this paper,we derive the general expression of perfectly plastic field at a rapidlypropagating plane-strain crack-tip.Applying this general expression with Poisson ratio toModeⅠcrack,the perfectly plastic field at the rapidly propagating tip of ModeⅠplane-strain crack is obtained.This perfectly plastic field contains a Poisson ratio,and thus,wecan obtain the effect of Poisson ratio on the perfectly plastic field at the rapidly propagatingtip of ModeⅠplane-strain crack.  相似文献   

6.
For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.  相似文献   

7.
The near crack line field analysis method has been used to investigate into ModeⅢ quasistatically propagating crack in an elastic-perfectly plastic material.Thesignificance of this paper is that the usual small scale yielding theory has been brokenthrough.By obtaining the general solutions of the stresses and the displacement rate ofthe near crack line plastic region,and by matching the general solutions with theprecise elastic fields(not the usual elastic K-dominant fields)at the elastic-plasticboundary,the precise and new solutions of the stress and deformation fields,the sizeof the plastic region and the unit normal vector of the elastic-plastic boundary havebeen obtained near the crack line.The solutions of this paper are sufficiently precisenear the crack line region because the roughly qualitative assumptions of the smallscale yielding theory have not been used and no other roughly qualitative assumptionshave been taken,either.The analysis of this paper shows that the assumingly“steady-state cas  相似文献   

8.
POWER LAW NONLINEAR VISCOELASTIC CRACK-TIP FIELDS   总被引:1,自引:0,他引:1  
The aim of this paper is to derive the power law type nonlinear viscoelastic crack-tip fields. For the requirement of later derivation, the HRR singular fields and the high-order asymptotic fields are first examined. That they are essentially the isotropic, incompressible, power law type nonlinear elastic crack-tip fields is illustrated. After a concise review of the elasticity recovery correspondence principle for solving the nonlinear viscoelastic problems, the correspondence principle for solving the crack problems of power law type nonlinear viscoelastic materials under the first type boundary condition is proposed. The solution of the crack-tip stress, strain fields for the power law type nonlinear viscoelastic materials, especially for the modified polypropylene, is obtained.  相似文献   

9.
The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived. And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and strip‘s highness on the dynamic fracture behavior.Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip‘ s highness.  相似文献   

10.
The plane strain problem of a crack in a functionally graded strip with a power form shear modulus is studied. The governing equation in terms of Airy's stress function is solved exactly by means of Fourier transform. The mixed boundary problem is then reduced to a system of singular integral equations and is solved numerically to obtain the stress intensity factor at crack-tip. The maximum circumferential stress criterion and the strain energy density criterion are both employed to predict the direction of crack initiation. Numerical examples are given to show the influence of the material gradation models and the crack sizes on the mode-I and mode-II stress intensity factors. The dependence of the critical kink-angle on the crack size is examined and it is found that the crack kink-angle decreases with the increase of the normalized crack length, indicating that a longer crack tends to follow the original crack-line while it is much easier for a shorter crack to deviate from the original crack-line.  相似文献   

11.
A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.  相似文献   

12.
THEPLANESTRESSCRACK-TIPFIELDFORANINCOMPRESSIBLERUBBERMATERIALGaoYu-chen(高玉臣),ShiZhi-fei(石志飞)(HarbinShipbuildingEngneeringInst...  相似文献   

13.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode Ⅰ crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode Ⅰ crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

14.
I型定常扩展裂纹尖端的弹黏塑性场   总被引:1,自引:1,他引:1  
Jia Bin  王振清  李永东 《力学学报》2005,37(4):421-427
考虑材料在扩展裂纹尖端的黏性效应,假设黏性系数与塑性应变率的幂次成反比,对幂硬化材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了I型裂纹数值解的性质随各参数的变化规律. 分析表明应力和应变均具有幂奇异性,并且只有在线性硬化时,尖端场的弹、黏、塑性才可以合理匹配. 对于I型裂纹,裂尖场不含弹性卸载区. 当裂纹扩展速度趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式;如果进一步考虑硬化系数为零的极限情况,便可退化为Hui和Riedel的非线性黏弹性解.  相似文献   

15.
A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-I quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media. The results show that the near-tip stress and strain are fully continuous, and the strain possesses In (A/r) singularity at the crack tip. The expressions of the stress, strain and velocity in each region are also given. The project supported by National Natural Science Foundation of China  相似文献   

16.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

17.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号