首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
裂纹转子在支承松动时的振动特性研究   总被引:1,自引:0,他引:1  
以具有支承松动的Jeffcott裂纹转子为研究对象,分析了支承松动和轴上横向裂纹对转子系统刚度的影响,建立了转子系统振动的微分方程,并用数值方法分析了其振动特性。分析表明,转子在裂纹和支承松动这两种非线性因素的作用下,表现出复杂的非线性行为。  相似文献   

2.
In this paper the global response characteristics of a piecewise smooth dynamical system with contact, which is specifically used to describe the rotor/stator rubbing systems, is studied analytically. A method to derive the global response characteristics of the model is proposed by studying each piece of the equations corresponding to different phases of the rotor motion, i.e., the phase without rubbing, the phase with rubbing and the phase of self-excited backward whirl. After solving the typical responses in each phase and deriving the corresponding existence boundaries in the parameter space, an overall picture of the global response characteristics of the model is obtained. As is shown, five types of the coexistences of the different rotor responses and deep insights into the interactive effect of parameters on the dynamic behavior of the model are gained.  相似文献   

3.
Nonlinear dynamics of a cracked rotor in a maneuvering aircraft   总被引:1,自引:0,他引:1  
The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated, The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasiperiodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.  相似文献   

4.
The stability of a rotor system presenting a transverse breathing crack is studied by considering the effects of crack depth, crack location and the shaft's rotational speed. The harmonic balance method, in combination with a path-following continuation procedure, is used to calculate the periodic response of a non-linear model of a cracked rotor system. The stability of the rotor's periodic movements is studied in the frequency domain by introducing the effects of a perturbation on the periodic solution for the cracked rotor system.It is shown that the areas of instability increase considerably when the crack deepens, and that the crack's position and depth are the main factors affecting not only the non-linear behaviour of the rotor system but also the different zones of dynamic instability in the periodic solution for the cracked rotor. The effects of some other system parameters (including the disk position and the stiffness of the supports) on the dynamic stability of the non-linear periodic response of the cracked rotor system are also investigated.  相似文献   

5.
对考虑定子质量和碰撞面刚度的四自由度转子/定子模型的全局响应特性进行了研究。首先,通过解析方法确定了无碰摩响应的边界,然后,求解了同频全周碰摩解并进行了稳定性分析得到了同频全周碰摩响应的区域。在此基础上,利用非线性动力学分析的数值方法,确定了准周期局部碰摩与反向涡动失稳的边界,由此得出了参数平面内的不同碰摩响应的稳定区域图。进而研究了定子与转子质量比和碰撞面刚度对碰摩全局响应特性的影响,得到了不同碰摩响应共存及随系统参数变化的典型全局响应分岔图。  相似文献   

6.
More coupling mechanisms between the six degrees of freedom (DOFs) are introduced by considering the contribution of the general transverse forces to stress intensity factor of mode I crack in predicting the crack additional flexibility matrix of the cracked rotor. And the obtained flexibility elements show a good agreement with the experiment result for a wide range of the crack depth ratio. Six DOFs coupled dynamic equations for cracked rotor are formulated by introducing three rotational DOFs. A response-dependent non-linear breathing crack model is applied to simulate the breathing behavior during operation in this paper. Numerical investigations are carried out to simulate the various parametric conditions on the dynamic characteristics of cracked rotor, including the crack depth, shaft slenderness ratio, and rotating speed ratio. A perturbation frequency component and its combinations with harmonic components are observed in the dynamic response obtained by six DOFs coupled models (SDCM). Some differences in evolution of whirling orbit obtained by SDCM and three DOFs coupled models are found, when the cracked rotor passes through the sub-critical speeds.  相似文献   

7.
A general model of a rub-impact rotor system is set up and supported by oil film journal bearings. The Jacobian matrix of the system response is used to calculate the Floquet multipliers, and the stability of periodic response is determined via the Floquet theory. The nonlinear dynamic characteristics of the system are investigated when the rotating speed and damping ratio is used as control parameter. The analysis methods are inclusive of bifurcation diagrams, Poincaré maps, phase plane portraits, power spectrums, and vibration responses of the rotor center and bearing center. The analysis reveals a complex dynamic behavior comprising periodic, multi-periodic, chaotic, and quasi-periodic response. The modeling results thus obtained by using the proposed method will contribute to understanding and controlling of the nonlinear dynamic behaviors of the rotor-bearing system.  相似文献   

8.
转子/定子碰摩响应的全局动力学特性研究   总被引:1,自引:1,他引:1  
刘林  江俊 《应用力学学报》2006,23(3):351-356
在不考虑自重的转子系统全局碰摩动力响应特性的解析分析基础上,应用数值分析方法,研究了考虑自重的转子系统的全局碰摩动力响应特性。通过大量的数值计算得到了不同参数平面内、不同碰摩响应的稳定区域图。研究表明重力引起的静变形与偏心距之比是决定转子的碰摩响应的变化大小的重要参数,比值越大,转子碰摩响应较不考虑自重的转子碰摩响应的变化越大,会出现多种复杂的响应和共存现象。本研究有助于认清系统参数相互作用对出现不同碰摩响应序列的影响。  相似文献   

9.
分析了在动载轴承非稳态非线性油膜力作用下,具有横向裂纹柔性轴Jeffcott转子在非线性涡动影响下的动力特性。通过数值计算表明,在油膜失稳转速前,随着裂纹轴刚度变化比的增大,系统在低转速区域内具有丰富的非线性动力行为,出现倍周期分叉及混沌现象,涡动振幅随转速升高而减小,直到非稳态非线性油膜失稳,在无裂纹转子油膜临界失稳点处发现了类Hopf分叉现象,系统运动由平衡变为拟周期运动;裂纹转子在油膜临界失稳时的系统运动亦为拟周期运动,裂纹转子轴刚度变化对油膜失稳点及油膜失稳之后转子的运动影响不大,转子系统作拟周期运动。  相似文献   

10.
The object of this research aims at the hydraulic generator unit rotor system. According to fault problems of the generator rotor local rubbing caused by the parallel misalignment and mass eccentricity, a dynamic model for the rotor system coupled with misalignment and rub-impact is established. The dynamic behaviors of this system are investigated using numerical integral method, as the parallel misalignment, mass eccentricity and bearing stiffness vary. The nonlinear dynamic responses of the generator rotor and turbine rotor with coupling faults are analyzed by means of bifurcation diagrams, Poincaré maps, axis orbits, time histories and amplitude spectrum diagrams. Various nonlinear phenomena in the system, such as periodic, three-periodic and quasi-periodic motions, are studied with the change of the parallel misalignment. The results reveal that vibration characteristics of the rotor system with coupling faults are extremely complex and there are some low frequencies with large amplitude in the 0.3–0.4× components. As the increase in mass eccentricity, the interval of nonperiodic motions will be continuously moved forward. It suggests that the reduction in mass eccentricity or increase in bearing stiffness could preclude nonlinear vibration. These might provide some important theory references for safety operating and exact identification of the faults in rotating machinery.  相似文献   

11.
非线性碰摩力对碰摩转子分叉与混沌行为的影响   总被引:25,自引:1,他引:24  
研究了具有非线性碰摩力的转子局部碰摩的分叉与混沌运动,利用计算机仿真对某发动机转子的碰摩故障进行了数值模拟,讨论了转子系统参数的变化对转子混池运动状态的影响,并与碰摩实验结果进行了比较,发现了具有非线性碰摩力的转子局部碰摩转子系统的各种多周期运动和混沌运动及其演变过程。  相似文献   

12.
Due to the micro-fabrication limitations and the low thickness of the silicon wafer, the length-to-diameter ratio (L/D) of the gas journal bearings in Power MEMS is about one order lower than that of the conventional bearings, which suggests that the viscous friction force in the micro-bearing is comparable to the load capacity. The effects of viscous friction force on non-linear dynamic characteristics of the ultra-short micro-bearing-rotor system are studied in this paper. The molecular gas-film lubrication model, which valid for arbitrary Knudsen numbers, is systematically coupled with the rotor kinetic equations and solved simultaneously to investigate the non-linear dynamic behavior of the system. The center orbits, phase portraits, Poincaré maps, and FFT spectra of the system response at different L/D ratio, rotor mass, and bearing number, and the corresponding bifurcation diagrams for cases of ignoring and considering viscous friction force are inspected and compared. The results indicate that, if the viscous friction force is not taken into account in the case of low L/D ratio, the low-frequency large-amplitude self-excited whirl motion will be predicted as the increase of the rotor mass and the bearing number. However, when the viscous friction force is included in the non-linear dynamic model, the rotor motion becomes more stable under the same conditions, as the synchronous motion with smaller amplitude prevails.  相似文献   

13.
Nonlinear dynamics and stability of the rotor–bearing–seal system are investigated both theoretically and experimentally. An experimental rotor–bearing–seal device is designed and corresponding tests are carried out. The experimental rotor system is simplified as the Jeffcott rotor. The nonlinear oil–film forces are obtained under the short bearing theory and Muszynska nonlinear seal force model is used. Numerical method is utilized to solve the nonlinear governing equations. Bifurcation diagrams, waterfall plots, Poincaré maps, spectrum plots and rotor orbits are drawn to analyze various nonlinear phenomena and system unstable processes. Theoretical results from numerical analysis are in good agreement with results from experiments. Conclusions are drawn and prove that this study will contribute to the further understanding of nonlinear dynamics and stability of the rotor system with the fluid-induced forces from oil–film bearings and the seals.  相似文献   

14.
An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bifurcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bifurcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.  相似文献   

15.
This work reports a numerical study undertaken to investigate the dynamic response of a rotor supported by two turbulent flow model journal bearings with nonlinear suspension and lubricated with couple stress fluid under quadratic damping. This may be the first time that analysis of rotor-bearing system considered the quadratic damping effect. The dynamic response of the rotor center and bearing center are studied. The analysis methods employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The modeling results provide some useful insights into the design and development of rotor-bearing system for rotating machinery that operates at highly rotational speed and highly nonlinear regimes.  相似文献   

16.
轴承-转子系统的非线性特性及其在基础运动作用时的响应,是离心机设备设计阶段必须考虑的。本文使用简化的多自由度转子模型进行模拟分析,运动方程考虑了非线性的油膜润滑轴承模型。应用自适应时间步长的Runge-Kutta-Felburg法求解微分运动方程组,将人造的正弦波加速度作为基础运动输入系统,使用Poincaré图、分岔图和瀑布图分别考察了垂直放置转子在有无基础运动作用时的动力学性质。快速傅里叶变换在频域内揭示了转动频率与基础振动频率之间的组合共振现象。计算的结果不仅给出了泵转子自身的非线性性质,也展示了泵转子在基础运动作用时的组合共振。  相似文献   

17.
对包含不同类型裂纹(横裂纹、横-斜裂纹以及任意斜裂纹)的转子的耦合振动进行研究,以揭示裂纹转子在不同方向上刚度参数的变化规律及其交叉耦合机理,特别是由此引发的振动特征. 对于包含不同类型裂纹的转子轴段,采用六自由度Timoshenko梁单元模型对其进行单元建模,并基于应变能理论推导计算柔度参数和刚度矩阵. 在此基础上, 采用纽马克-$\beta$数值算法求解裂纹转子的运动方程,获得裂纹转子在单故障或多故障激励(不平衡激励、扭转激励或不平衡激励加扭转激励)作用下的耦合振动响应,进而分析耦合振动谱特征. 与横裂纹和横-斜裂纹相比,任意斜裂纹使转子刚度矩阵的交叉耦合效应更显著,导致转子发生更强烈的弯-扭耦合甚至是纵-弯-扭耦合振动.无论是在不平衡激励还是扭转激励作用下, 弯曲振动与扭转振动幅度都更大. 而且,包含不同类型裂纹的转子的耦合振动特征频率,例如旋转基频与二倍频、扭转激励频率及其边带成分的幅值,对裂纹面方向角具有不同的敏感性. 所得的这些研究结果,可以为转子裂纹的特征参数辨识与诊断提供理论依据.   相似文献   

18.
一种确定非线性裂纹转子解的形式的新方法   总被引:3,自引:0,他引:3  
郑吉兵  孟光 《力学学报》1998,30(1):51-57
将小波变换与Poincare映射相结合,即用Poincare映射确定周期解,用谐波小波变换区分拟周期响应和混沌运动,提出了一种分析非线性裂纹转子系统解的形式随参数变化的新方法.结果表明这种方法是非常有效的,它比以前所用的计算Liapunov指数的方法节约了计算时间,并且较易实施.  相似文献   

19.
Grazing Bifurcation in the Response of Cracked Jeffcott Rotor   总被引:2,自引:1,他引:2  
Qin  Weiyang  Chen  Guanrong  Ren  Xingmin 《Nonlinear dynamics》2004,35(2):147-157
A cracked rotor is modeled by a piecewise linear system due to thebreath of crack in a rotating shaft. The differential equations ofmotion for the nonsmooth system are derived and solved with thenumerical integration method. From the simulation results, it isobserved that a grazing bifurcation exists in the response. Thegrazing bifurcation can give rise to jumps between periodic motions,quasi-periodic motions from the periodic ones, chaos, and intermittentchaos.  相似文献   

20.
The influence of the presence of transverse cracks in a rotating shaft is analyzed. The paper addresses the influence of crack opening and closing on dynamic response during operation. The evolution of the orbit of the cracked rotor near half and one-third of the first critical speed is investigated. The dynamic response of the rotor with a breathing crack is evaluated by expanding the changing stiffness of the crack as a truncated Fourier series and then using the Harmonic Balance Method. This method is applied to compute various parametric studies including the effects of the crack depth and location on the dynamic of a crack rotor. The evolution of the first critical speed, associated amplitudes at the critical speed and half of the critical speed, and the resulting orbits during transient operation are presented and some distinguishing features of a cracked rotor are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号