首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.  相似文献   

2.
《Physics letters. A》2020,384(23):126444
Two-dimensional (2D) materials play key role in designing and fabricating diminutive optoelectronic devices with high efficiency. In this paper, we report the results of a comprehensive first-principles study on the structural and electronic properties of the pristine and hydroxyl group OH-functionalized (OH-AlN-OH) AlN monolayer. GGA-PBE and hybrid HSE06 functionals are employed to describe the exchange-correlation potential. According to our calculations, the pristine AlN monolayer has a wide indirect band gap of 2.954(4.000) eV determined by PBE(HSE06) level of theory. Indirect-direct gap transition is obtained through the chemical functionalization and the band gap reduces to 0.775(2.125) eV. Results shows that the OH-AlN-OH monolayer is more suitable for optoelectronic applications. Finally, the strain is proven to be efficient factor to tune the electronic properties of the studied monolayers.  相似文献   

3.
The electronic properties of saturated and unsaturated twinned SiC nanowires grown along [111] direction and surrounded by {111} facets are investigated using first-principles calculations with density functional theory and generalized gradient approximation. All the nanowires considered, including saturated and unsaturated ones, exhibit semiconducting characteristics. The saturated nanowires have a direct band gap and the band gap decreases with increasing diameters of the nanowires. The hexagonal (2H) stacking inside the cubic (3C) stacking has no effect on electronic properties of the SiC nanowires. The highest occupied molecular orbitals and the lowest unoccupied molecular orbitals are distributed along the nanowire axis uniformly, which indicates that the twinned SiC nanowires are good candidates in realizing nano-optoelectronic devices.  相似文献   

4.
《中国物理 B》2021,30(10):106807-106807
Two-dimensional monolayer copper selenide(Cu Se) has been epitaxially grown and predicted to host the Dirac nodal line fermion(DNLF). However, the metallic state of monolayer Cu Se inhibits the potential application of nanoelectronic devices in which a band gap is needed to realize on/off properties. Here, we engineer the band structure of monolayer Cu Se which is an analogue of a p-doped system via external atomic modification in an effort to realize the semiconducting state.We find that the H and Li modified monolayer Cu Se shifts the energy band and opens an energy gap around the Fermi level.Interestingly, both the atomic and electronic structures of monolayer Cu HSe and Cu Li Se are very different. The H atoms bind on top of Se atoms of monolayer Cu Se with Se–H polar covalent bonds, annihilating the DNLF band of monolayer Cu Se dominated by Se orbitals. In contrast, Li atoms prefer to adsorb at the hexagonal center of Cu Se, preserving the DNLF band of monolayer Cu Se dominated by Se orbitals, but opening band gaps due to a slight buckling of the Cu Se layer. The realization of metal-to-semiconductor transition from monolayer Cu Se to Cu X Se(X = H, Li) as revealed by first-principles calculations makes it possible to use Cu Se in future electronic devices.  相似文献   

5.
《Physics letters. A》2019,383(23):2744-2750
Two-dimensional (2D) materials exhibit unique electronic properties compared with their bulks. A systematical study of new type 2D tetragonal materials of MPn (M = Sc and Y; Pn = P, As and Sb) nanosheets and the corresponding nanoribbons are proposed by density functional theory calculations. Several thermodynamically stable 2D tetragonal structures were firstly determined, and such novel tetragonal structures bilayer MPn(100) exhibit extraordinary Weyl semimetal electronic structures, while monolayer MPn(110) are semiconductors. Moreover, bilayer MPn(100) nanoribbons with zigzag edges show metallic behavior, whereas those with linear edges show semiconducting properties. The band gaps for bilayer MPn(100) nanoribbons with linear edges can be significantly tuned by their widths. The zero-gap semiconducting behaviors of 2D tetragonal MPn nanosheets and the tunable band gaps of 1D MPn nanoribbons provide these MPn nanosheets and nanoribbons with promising applications in nanoscale electronic devices.  相似文献   

6.
沈婉慧子  邹代峰  聂国政  许英 《中国物理 B》2017,26(11):117202-117202
The effects of biaxial strain on the electronic structure and thermoelectric properties of monolayer WSe_2 have been investigated by using first-principles calculations and the semi-classical Boltzmann transport theory. The electronic band gap decreases under strain, and the band structure near the Fermi level of monolayer WSe_2 is modified by the applied biaxial strain. Furthermore, the doping dependence of the thermoelectric properties of n-and p-doped monolayer WSe_2 under biaxial strain is estimated. The obtained results show that the power factor of n-doped monolayer WSe_2 can be increased by compressive strain while that of p-doping can be increased with tensile strain. Strain engineering thus provides a direct method to control the electronic and thermoelectric properties in these two-dimensional transition metal dichalcogenides materials.  相似文献   

7.
二维硅烯的商业用途通常受到其零带隙的抑制,限制了其在纳米电子和光电器件中的应用.利用基于密度泛函理论的第一性原理计算,单层硅烯的带隙通过卤原子的化学官能化被成功打开了,并综合分析了卤化对单层硅烯的结构,电子和光学性质的影响.研究结果表明卤化使结构变得扭曲,但保持了良好的稳定性.通过HSE06泛函,全功能化赋予硅烯1.390至2.123 eV的直接带隙.键合机理分析表明,卤原子与主体硅原子之间的键合主要是离子键.最后,光学性质计算表明,I-Si-I单层在光子频率为10.9 eV时达到最大光吸收,吸收值为122000 cm-1,使其成为设计新型纳米电子和光电器件的有希望的候选材料.  相似文献   

8.
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.  相似文献   

9.
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to ?0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.  相似文献   

10.
Qing Zhan 《中国物理 B》2021,30(11):117105-117105
Two-dimensional (2D) semiconducting tin disulfide (SnS2) has been widely used for optoelectronic applications. To functionalize SnS2 for extending its application, we investigate the stability, electronic and magnetic properties of substitutional doping by high throughput first-principles calculations. There are a lot of elements that can be doped in monolayer SnS2. Nonmetal in group A can introduce p-type and n-type carriers, while most metals in group A can only lead to p-type doping. Not only 3d, but also 4d and 5d transition metals in groups VB to VⅢB9 can introduce magnetism in SnS2, which is potentially applicable for spintronics. This study provides a comprehensive view of functionalization of SnS2 by substitutional doping, which will guide further experimental realization.  相似文献   

11.
We predict that a phase transition in freestanding monolayer Xenes from the semiconducting phase to the excitonic insulating (EI) phase can be induced by reducing an external electric field below some critical value which is unique to each material. The splitting of the conduction and valence bands due to spin–orbit coupling at non-zero electric fields leads to the formation of A and B excitons in the larger or smaller band gap, with correspondingly larger or smaller binding energies. Our calculations show the coexistence of the semiconducting phase of A excitons with the EI phase of B excitons for a particular range of electric field. The dielectric environment precludes the existence of the EI phase in supported or encapsulated monolayer Xenes.  相似文献   

12.
高载流子迁移率和可调直接带隙是低维电子器件应用的两个关键特性.但目前发现的此类二维材料稀少.鉴于此在第一性原理计算的基础上,本文系统研究了In2(PS3)3单层的稳定性、电子结构性质和机械性质.研究结果表明,In2(PS3)3单层是具有直接带隙的半导体材料(1.58 eV).在-3%到3%应变下,In2(PS3)3单层的带隙是可以调节的(1.3~1.8 eV).声子谱、分子动力学和弹性常数的计算结果表明,In2(PS3)3单层是热力学、动力学和机械稳定的.此外,In2(PS3)3单层的剥离能(0.21 J m-2)小于石墨烯的剥离能(0.36 J m-2),有望像石墨烯一样机械剥离得到.这些优异的的性能使得In  相似文献   

13.
陶鹏程  黄燕  周孝好  陈效双  陆卫 《物理学报》2017,66(11):118201-118201
采用基于密度泛函理论的第一性原理赝势平面波方法,计算了卤族元素掺杂对金属-MoS_2界面性质的影响,包括缺陷形成能、电子能带结构、差分电荷密度以及电荷布居分布.计算结果表明:卤族元素原子倾向于占据单层MoS_2表面的S原子位置;对于单层MoS_2而言,卤族元素的掺杂将在禁带中引入杂质能级以及导致费米能级位置的移动.对于金属-MoS_2界面体系,结合Schottky-Mott模型,证明了卤族元素的掺杂可以有效地调制金属-MoS_2界面间的肖特基势垒高度.发现F和Cl原子的掺杂将会降低体系的肖特基势垒高度.相比之下,Br和I原子的掺杂却增大了体系的肖特基势垒高度.通过差分电荷密度和布居分布的分析,阐明了肖特基势垒高度的被调制是因为电荷转移形成的界面偶极矩的作用导致.研究结果解释了相关实验现象,并给二维材料的器件化应用提供了调节手段.  相似文献   

14.
We have investigated the properties of SiCAlN quaternary compounds composed of SiC and AlN polytypes by first-principle calculations. We find that their band gaps have a large tunability and are sensitive to the polytype structures. Their electronic properties vary from wide-band-gap semiconducting to metallic due to the complex charge transfer between the two constituents SiC and AlN. The formation energies are also calculated. These results show SiCAlN quaternary compounds have potential applications in the electronic devices that can be tuned over a large wavelength range.  相似文献   

15.
First-principles calculations are performed to investigate the electronic and magnetic characteristics of Fe-doped two-dimensional (2D) InSe monolayer by applying biaxial compressive and tensile strains. Our studies show that Fe substituting indium atom can be realized easily under Se-rich experimental environments, and can induce the magnetic semiconducting characteristics. Interestingly, the magnetic moments are insensitive to the strain ~ −6% to 6% range. However, loading larger tensile strain can decrease the magnetic moments sharply. Moreover, the system still retains semiconducting characteristics under compressive strain, while a transition occurs from semiconductor to metal beyond the tensile strain 8%. These results provide the theoretical predications that Fe-doped 2D InSe material may be applied in the spintronic devices.  相似文献   

16.
We make use of first-principles calculations to study the effects of functionalization and compression on the electronic properties of 2D lattices of Au nanoparticles. We consider Au38 particles capped by methylthiol molecules and possibly functionalized by the dithiolated conjugated molecules benzenedimethanethiol and benzenedicarbothialdehyde. We find that the nonfunctionalized lattices are insulating, with negligible band dispersions even for a compression of 20% of the lattice constant. Distinct behaviors of the dispersion of the lowest conduction band as a function of compression are predicted for functionalized lattices: The band dispersion of the benzenedimethanethiol-functionalized lattice increases considerably with compression, while that of the benzenedicarbothialdehyde-functionalized lattice decreases.  相似文献   

17.
李彦景  李亚林  李树龙  龚裴  房晓勇 《中国物理 B》2017,26(4):47309-047309
Silicon carbide(SiC) is a wideband gap semiconductor with great application prospects,and the SiC nanomaterials have attracted more and more attention because of their unique photoelectric properties.According to the first-principles calculations,we investigate the effects of diameter on the electronic and optical properties of triangular SiC NWs(T-NWs)and hexagonal SiC NWs(H-NWs).The results show that the structure of H-NWs is more stable than T-NWs,and the conduction band bottom of H-NWs is more and more deviated from the valence band top,while the conduction band bottom of T-NWs is closer to the valence band top.What is more,H-NWs and T-NWs have anisotropic optical properties.The result may be helpful in developing the photoelectric materials.  相似文献   

18.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

19.
王丹  邹娟  唐黎明 《物理学报》2019,68(3):37102-037102
用氢对单层二维过渡金属硫化物(TMDs)进行功能化是调节单层TMDs电子性质的既有效又经济的方法.采用密度泛函理论,对单层TMDs (MX_2 (M=Mo, W; X=S, Se, Te))的稳定性和电子性质进行理论研究,发现在单层MX_2 的层间有一个比其表面更稳定的氢吸附位点.当同阳离子时,随着阴离子原子序数的增加, H原子与MX_2 层的结合越强,氢化单层MX_2 结构越稳定;相反,同阴离子时,随着阳离子原子序数的增加, H原子与MX_2 层的结合越弱.氢原子从MoS_2的表面经层间穿越到另一表面的扩散势垒约为0.9 eV.氢化对单层MX_2 的电子特性也会产生极大的影响,主要表现在氢化实现了MX_2 体系从无磁性到磁性体系的过渡.表面氢化会使MX_2 层的带隙急剧减小,而层间氢化使MX_2 的电子结构从半导体转变为金属能带.  相似文献   

20.
MoS2 and WS2 layered transition-metal dichalcogenides are indirect band gap semiconductors in their bulk forms. Thinned to a monolayer, they undergo a transition and become direct band gap materials. Layered structures of that kind can be folded to form nanotubes. We present here the electronic structure comparison between bulk, monolayered and tubular forms of transition metal disulfides using first-principle calculations. Our results show that armchair nanotubes remain indirect gap semiconductors, similar to the bulk system, while the zigzag nanotubes, like monolayers, are direct gap materials, what suggests interesting potential applications in optoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号