首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare′ maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.  相似文献   

2.
In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincar6 maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system pa- rameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchro- nization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.  相似文献   

3.
This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method.  相似文献   

4.
This paper is concerned with the Hopf bifurcation control of a new hyperchaotic circuit system. The stability of the hyperchaotie circuit system depends on a selected control parameter is studied, and the critical value of the system parameter at which Hopf bifurcation occurs is investigated. Theoretical analysis give the stability of the Hopf bifurcation. In particular, washout filter aided feedback controllers are designed for delaying the bifurcation point and ensuring the stability of the bifurcated limit cycles. An important feature of the control laws is that they do not result in any change in the set of equilibria. Computer simulation results are presented to confirm the analytical predictions.  相似文献   

5.
t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the longrange Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.  相似文献   

6.
贾晓宇  郑曙昕 《中国物理 C》2013,37(12):105-108
Stabilization of the accelerating field in Drift Tube Linac(DTL) is obtained by inserting Post Couplers(PCs). On the basis of the equivalent circuit model for the DTL with and without asymmetrical PCs, stabilization is deduced quantitatively: we let δω/ω0 be the relative frequency error, then we discover that the sensitivity of field to perturbation is proportional to √δω/ω0 without PCs and to δω/ω0 with PCs. Then we adapt the circuit model of symmetrical PCs for the case of asymmetrical PCs. The circuit model shows how the slope of field distribution is changed by rotating the asymmetrical PCs and illustrates that the asymmetrical PCs have the same effect as the symmetrical ones in stabilization.  相似文献   

7.
Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t →∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrimn. However, when the environment is initially at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed sta.te appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.  相似文献   

8.
Plasmonics is a rapidly developing field concerning light manipulation at the nanoscale with many potential applications, of which plasmonic circuits are promising for future information technology. Plasmonic waveguides are fundamental elements for constructing plasmonic integrated circuits. Among the proposed different plasmonic waveguides, metallic nanowires have drawn much attention due to the highly confined electromagnetic waves and relatively low propagation loss. Here we review the recent research progress in the waveguiding characteristics of metallic nanowires and nanowire-based nanophotonic devices. Plasmon modes of both cylindrical and pentagonal metallic nanowires with and without substrate are discussed. Typical methods for exciting and detecting the plasmons in metallic nanowires are briefly summarized. Because of the multimode characteristic, the plasmon propagation and emission in the nanowire have many unique properties, benefiting the design of plasmonic devices. A few nanowire-based devices are highlighted, including quarter-wave plate, Fabry-Prot resonator, router and logic gates.  相似文献   

9.
Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (A-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR [tecay on the prepared entangled states is analyzed.  相似文献   

10.
The open electron resonator is a mesoscopic device that has attracted considerable attention due to its remarkable behavior: conductance oscillations. In this paper, using an improved quantum theory to mesoscopic circuits developed recently by Li and Chen, the mesoscopic electron resonator is quantized based on the fundamental fact that the electric charge takes discrete value. With presentation transformation and unitary transformation, the SchrSdinger equation becomes an standard Mathieu equation. Then, the detailed energy spectrum and wave functions in the system axe obtained, which will be helpful to the observation of other characters of electron resonator. The average of currents and square of the current are calculated, the results show the existence of the current fluctuation, which causes the noise in the circuits, the influence of inductance to the noise is discussed. With the results achieved, the stability characters of mesoscopic electron resonator are studied firstly, these works would be benefit to the design and control of integrate circuit.  相似文献   

11.
We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical resonator (NMR). The nonlinear interaction between the STLR and the CPB can be implemented by setting the external biased flux of the CPB at some certain points. The interaction Hamiltonian between the STLR and the NMR is derived by performing Fr ohlich transformation on tile total Hamiltonian of tile combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian, and the squeezed states of the STLR can be easily generated, which is similar to the three-wave mixing in quantum optics.  相似文献   

12.
A low specific on-resistance SO1 LDMOS with a novel junction field plate (JFP) is proposed and investigated theo- retically. The most significant feature of the JFP LDMOS is a PP-N junction field plate instead of a metal field plate. The unique structure not only yields charge compensation between the JFP and the drift region, but also modulates the surface electric field. In addition, a trench gate extends to the buffed oxide layer (BOX) and thus widens the vertical conduction area. As a result, the breakdown voltage (BV) is improved and the specific on-resistance (Ron,sp) is decreased significantly. It is demonstrated that the BV of 306 V and the Ron,sp of 7.43 mΩ.cm2 are obtained for the JFP LDMOS. Compared with those of the conventional LDMOS with the same dimensional parameters, the BV is improved by 34.8%, and the Ron,sp is decreased by 56.6% simultaneously. The proposed JFP LDMOS exhibits significant superiority in terms of the trade-off between BV and Ron,sp. The novel JFP technique offers an alternative technique to achieve high blocking voltage and large current capacity for power devices.  相似文献   

13.
The vibrating wire alignment technique is a method which, by measuring the spatial distribution of a magnetic field, can achieve very high alignment accuracy. The vibrating wire alignment technique can be applied to fiducializing magnets and the alignment of accelerator straight section components, and it is a necessary supplement to conventional alignment methods. This article gives a systematic summary of the vibrating wire alignment technique, including vibrating wire model analysis, system frequency calculation, wire sag calculation, and the relation between wire amplitude and magnetic induction intensity. On the basis of this analysis, this article outlines two existing alignment methods, one based on magnetic field measurement and the other on amplitude and phase measurements. Finally, some basic experimental issues are discussed.  相似文献   

14.
A. Nyffeler 《中国物理 C》2010,34(6):705-711
We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contribution to the g- 2. We then reevaluate the numerically dominant pion-exchange contribution in the framework of large-No QCD, using an off-shell pion-photon-photon form factor which fulfills all QCD short-distance constraints, in particular, a new short-distance constraint on the off-shell form factor at the external vertex in g- 2, which relates the form factor to the quark condensate magnetic susceptibility in QCD. Combined with available evaluations of the other contributions to hadronic light-by-light scattering this leads to the new result αμ^LbyL;had= (116±40) × 10^-11, with a conservative error estimate in view of the many still unsolved problems. Some potential ways for further improvements are briefly discussed as well. For the electron we obtain the new estimate αe^LbyL;had= (3.9± 1.3) × 10^-14.  相似文献   

15.
This paper investigates the high frequency behaviours and magnetic anisotropy of rapidly solidified FINEMET (Fe73.5Si13.sBgNb3Cul) alloy ribbons annealed in an applied magnetic field. It finds that the ribbons annealed with the applied magnetic field show much higher resonance frequencies and have even higher permeability at higher frequencies than the samples annealed without the magnetic field and the non-annealed ribbons. MSssbauer spectroscopy had been employed to study the spatial distribution of the magnetic moments of five selected FINEMET alloy ribbons in different heat-treated conditions. The results show that an easy plane has been established after annealling in the magnetic field, while for the other ribbons this effect is not significant. Hence, the relationship between magnetic field annealing and high frequency property has been bridged by the bianisotropic theory.  相似文献   

16.
The mesoscopic nonlinear inductance-capacitance circuit is a typical anharmonie oscillator, due to diodes included in the circuit. In this paper, using the advanced quantum theory of mesoseopie circuits, which based on the fundamental fact that the electric charge takes discrete value, the diode included mesoscopic circuit is firstly studied. Schrodinger equation of the system is a four-order difference equation in p rep asentation. Using the extended perturbative method, the detail energy spectrum and wave functions axe obtained and verified, as an application of the results, the current quantum fluctuation in the ground state is calculated. Diode is a basis component in a circuit, its quantization would popularize the quantum theory of mesoscopie circuits. The methods to solve the high order difference equation are helpful to the application of mesoscopic quantum theory.  相似文献   

17.
The Rapid Cycling Synchrotron (RCS) is a key component of the China Spallation Neutron Source (CSNS). For this type of high intensity proton synchrotron, the chromaticity, space charge effects, and magnetic field tracking errors between the quadrupoles and the dipoles can induce beta function distortion and tune shift, and induce resonances. In this paper, the combined effects of chromaticity, magnetic field tracking errors and space charge on beam dynamics at CSNS/RCS are studied systemically. 3-D simulations with different magnetic field tracking errors are performed by using the code ORBIT, and the simulation results are compared with the case without tracking errors.  相似文献   

18.
Using the phase field crystal approach, the crystallization process within the liquid–solid coexistence region is investigated for a square lattice on an atomic scale. Two competing growth modes, i.e., the diffusion-controlled growth through long-range atomic migration in liquid and the diffusionless growth through local atom rearrangement, which give rise to two completely different crystallization behaviors, are compared. In the diffusion-controlled regime, the interface migrates in a layerwise manner, leading to a gradual change of crystal morphology from truncated square to four-fold symmetric dendrite with the increase of driving force. For the diffusionless growth mode, a single crystal with no significant density change occupies the whole system at a faster rate while exhibiting a small growth anisotropy. The competition between these two modes is also discussed from the key input of the phase field crystal model: the correlation function.  相似文献   

19.
In order to develop miniaturized and integrated electron vacuum devices, the electron beam modulation in a field- emission (FE) electron gun based on carbon nanotubes is researched. By feeding a high-frequency field between the cathode and the anode, the steady FE electron beam can be modulated in the electron gun. The optimal structure of the electron gun is discovered using 3D electromagnetism simulation software, and the FE electron gun is simulated by PIC simulation software. The results show that a broadband (74-114 GHz) modulation can be achieved by the electron gun with a rhombus channel, and the modulation amplitude of the beam current increases with the increases in the input power and the electrostatic field.  相似文献   

20.
A novel source-connected field plate structure, featuring the same photolithography mask as the gate electrode, is proposed as an improvement over the conventional field plate (FP) techniques to enhance the frequency performance in GaN-based HEMTs. The influences of the field plate on frequency and breakdown performance are investigated simultaneously by using a two-dimensional physics-based simulation. Compared with the conventional T-gate structures with a field plate length of 1.2 μm, this field plate structure can induce the small signal power gain at 10 GHz to increase by 5-9.5 dB, which depends on the distance between source FP and dramatically shortened gate FP. This technique minimizes the parasitic capacitances, especially the gate-to-drain capacitance, showing a substantial potential for millimeter-wave, high power applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号