首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
丁国辉  叶飞 《中国物理快报》2007,24(10):2926-2929
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e^2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.  相似文献   

2.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

3.
4.
We study electronic transport through a quantum dot (QD) with a precessing magnetic field. By using the Keldysh nonequilibrium Green function method, formulas of local density of states (LDOS) and conductance of QD are derived self-consistently. It shows that the LDOS and conductance have obvious changes with the Coulomb blockade interaction. The intensity and angle of the magnetic field or temperatures, which reflect the mesoscopic structure of the QD are derived. The superiority of this device is that the QD can be controlled easily by the magnetic field, so it is valuable to apply in generating, manipulating and probing spin state.  相似文献   

5.
We theoretically investigate the electrical transport property of a quantum dot with longitudinal optical phonons. The conductance through the dot connected to two leads is calculated by the nonequilibrium Green function within the Landauer-Büttiker framework. The numerical examples of the conductance with different electron-phonon coupling strengths show that the presence of a phonon field typically results in the suppression of the main peak accompanied by some phonon side peaks. Both the main peak and the side peaks axe sensitive to the electron-phonon coupling strength, which is related to temperature. Our results for this system are consistent with some related previous works but the calculation is comparatively simple.  相似文献   

6.
The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility χ_{imp} directly in future experiments.  相似文献   

7.
王瑞强  蒋开明 《中国物理 B》2009,18(12):5443-5450
The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron--phonon coupling strength.  相似文献   

8.
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is determined to be a Si_(170) cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300 meV, which is a result of the large capacitance of a small silicon quantum dot(~1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10 meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.  相似文献   

9.
于震  郭宇  郑军  迟锋 《中国物理 B》2013,22(11):117303-117303
We study the thermoelectric effect in a small quantum dot with a magnetic impurity in the Coulomb blockade regime.The electrical conductance,thermal conductance,thermopower,and the thermoelectrical figure of merit(FOM)are calculated by using Green’s function method.It is found that the peaks in the electrical conductance are split by the exchange coupling between the electron entering into the dot and the magnetic impurity inside the dot,accompanied by the decrease in the height of peaks.As a result,the resonances in the thermoelectric quantities,such as the thermal conductance,thermopower,and the FOM,are all split,opening some effective new working regions.Despite of the significant reduction in the height of the electrical conductance peaks induced by the exchange coupling,the values of the FOM and the thermopower can be as large as those in the case of zero exchange coupling.We also find that the thermoelectric efficiency,characterized by the magnitude of the FOM,can be enhanced by adjusting the left–right asymmetry of the electrode–dot coupling or by optimizing the system’s temperature.  相似文献   

10.
The quantum dot coupled to reservoirs is known as a typical mesoscopic setup to manifest the quantum characteristics of particles in transport. In analogue to many efforts made on the study of electronic quantum dots in the past decades, we study the transport of bosons through such a device. We first generalize the formula which relates the current to the local properties of dot in the bosonic situation. Then, as an illustrative example, we calculate the local density of state and lesser Green function of the localized boson with a bosonic Fano-Anderson model. The current-voltage (I - V) behaviour at zero temperature is presented, and in the bosonic dot it is the I - V curve, in contrast to the differential conductance in the electronic dot, which is found to be proportional to the spectral function.  相似文献   

11.
We have fabricated a few-electron quantum dot that can be tuned down to zero electrons while maintaining strong coupling to the leads. Using a nearby quantum point contact as a charge sensor, we can determine the absolute number of electrons in the quantum dot. We find several sharp peaks in the differential conductance, occurring at both zero and finite source-drain bias, for the one- and two-electron quantum dot. We attribute the peaks at finite bias to a Kondo effect through excited states of the quantum dot and investigate the magnetic field dependence of these Kondo resonances.  相似文献   

12.
We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Because of Kondo enhancement of Andreev reflections, the zero-bias anomaly develops side peaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T(K) we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/k(B)T(K) as the only relevant energy scale, providing experimental evidence for universal scaling in this system.  相似文献   

13.
We compute the zero bias conductance of electrons through a single ballistic channel weakly coupled to a side quantum dot with Coulomb interaction. In contrast to the standard setup which is designed to measure the transport through the dot, the channel conductance reveals Coulomb blockade dips rather then peaks due to the Fano-like backscattering. At zero temperature the Kondo effect leads to the formation of broad valleys of small conductance corresponding to an odd number of electrons on the dot. By applying a magnetic field in the dot region we find two dips corresponding to a total suppression in the conductance of spins up and down separated by an energy of the order of the Coulomb interaction. This provides a possibility of a perfect spin filter.Received: 6 November 2003, Published online: 2 April 2004PACS: 72.15.Qm Scattering mechanisms and Kondo effect - 73.23.Ad Ballistic transport - 72.25.-b Spin polarized transport  相似文献   

14.
We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.  相似文献   

15.
We report a strong Kondo effect (Kondo temperature approximately 4 K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.  相似文献   

16.
We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T相似文献   

17.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

18.
The conductance across a quantum dot can be influenced by levels localized in the dot and having little hybridization with the conduction channel. Fano lineshapes arising in resonant transmission measurements, imply interference between the localized and extended states. By applying a magnetic orthogonal field, the total spin of a quantum dot can be tuned. Electron correlations drive the dot through level crossings to higher spin states. Such crossings can give rise to Kondo conductance when the dot is at Coulomb blockade close to a magnetic field induced level degeneracy. In a previous work [P. Stefański, A. Tagliacozzo, B.R. Bulka, Phys. Rev. Lett. 93 (2004) 186805] we have shown that a Fano-like pattern also appears when the continuum of the conduction states originates from a broad Kondo resonance. A bunch of localized core levels, weakly coupled to the Kondo resonance, imprints the broad Kondo peak with Fano lineshapes. A signature of the presence of correlations in the quantum dot is discussed.  相似文献   

19.
We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号