首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrons cavity acceleration is one the relativistic regime to describe the monoenergetic electron acceleration. In this work, we introduce a new ellipsoid model that could be improved the quality of the electron beam in contrast to other methods such as that using periodic plasma wake field, spherical cavity regime and plasma channel guided acceleration. The trajectory of the electron motion can be described as hyperbola, parabola or ellipsoid path. It is influenced by the position and energy of the electrons and the electrostatic potential of the cavity. We have noticed that the electron output energy is not affected by the elongation of the transverse cavity radius in the ellipsoid regime.  相似文献   

2.
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived.The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal models and it explains the mono-energetic electron trajectory more accurately,especially at the relativistic region.The maximum energy of electrons is calculated and it is shown that the maximum energy of the spheroid model is less than that of the spherical model.The electron energy spectrum is also calculated and it is found that the energy distribution ratio of electrons △E/E for the spheroid model under the conditions reported here is half that of the spherical model and it is in good agreement with the experimental value in the same conditions.As a result,the quasi-mono-energetic electron output beam interacting with the laser plasma can be more appropriately described with this model.  相似文献   

3.
A reliable analytical expression for the potential of plasma waves with phase velocities near the speed of light is derived. The presented spheroid cavity model is more consistent than the previous spherical and ellipsoidal model and it explains the mono-energetic electron trajectory more accurately, especially at the relativistic region. As a result, the quasi-mono-energetic electrons output beam interacting with the laser plasma can be more appropriately described with this model.  相似文献   

4.
锥形激光等离子体中Compton 散射对电子的加速   总被引:8,自引:4,他引:4  
应用相对论性电子与光子非弹性碰撞模型和经典相对论电动力学理论,结合锥形飞秒强激光等离子体中的光场特性和静电场能,分析、计算了入射的高能电子束与等离子体中的光子发生多光子非线性Compton散射时对电子的加速效应,发现等离子体中的光场会引起电子加速能量的振荡;等离子体中的静电场降低电子的加速效应。用高能电子束与锥形飞秒强激光等离子体中的光子发生双光子非线性Compton散射,是加速电子最为理想的情况。  相似文献   

5.
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.  相似文献   

6.
《中国物理 B》2021,30(10):105201-105201
A new scheme is proposed to improve the electron beam quality of ionization-induced injection by tailoring gas profile in laser wakefield acceleration. Two-dimensional particle-in-cell simulations show that the ionization-induced injection mainly occurs in high-density stage and automatically truncates in low-density stage due to the decrease of the wakefield potential difference. The beam loading can be compensated by the elongated beam resulting from the density transition stage. The beam quality can be improved by shorter injection distance and beam loading effect. A quasi-monoenergetic electron beam with a central energy of 258 Me V and an energy spread of 5.1% is obtained under certain laser–plasma conditions.  相似文献   

7.
Ultra-short pulse lasers have opened a regime of laser-plasma interaction where plasmas have scale lengths shorter than the laser wavelength and allow the possibility of generating near-solid density plasmas. The interaction of high-intensity laser beams with sharply bounded high-density and small scale length plasmas is considered. Absorption of the laser energy associated with the mechanism of dragging electrons out of the plasma into the vacuum and sending them back into the plasma with the electric field component along the density gradient, so called vacuum heating, is studied. An exponentially decreasing electron density profile is assumed. The vector potential of the electromagnetic field propagating through the plasma is calculated and the behaviour of the electric and magnetic components of the electromagnetic field is studied. The fraction of laser power absorbed in this process is calculated and plotted versus the laser beam incidence angle, illumination energy, and the plasma scale length.  相似文献   

8.
超强激光驱动的辐射反作用力效应与极化粒子加速   总被引:2,自引:0,他引:2       下载免费PDF全文
光强超过10~(22) W/cm~2的极端超强激光将光与物质的相互作用推进到辐射主导区域,激发高能伽马光子辐射,产生明显的辐射反作用力效应.辐射反作用力可以显著影响强场中带电粒子的动力学行为,并从根本上改变了极端强场区域的激光等离子体相互作用规律.如何理解和验证辐射反作用力效应是强场物理研究的核心内容之一.本文结合该方向的国内外研究进展,论述了辐射反作用力的经典形式与强场量子电动力学的理论计算与模拟方法,详细讨论了单粒子在强场中的反射、量子随机辐射、自旋-辐射耦合等效应,介绍了激光等离子体相互作用中的电子冷却、辐射俘获、高效伽马辐射等机制,并给出了目前辐射反作用力效应的实验验证方法与进展.针对自旋在强场量子电动力学方面的效应,介绍了激光加速产生极化粒子源的方法.  相似文献   

9.
采用相对论电磁粒子模拟程序研究了飞秒激光等离子体相互作用中产生的电流密度、电场和自生磁场的发展演化过程。介绍了电子的非局域热输运的基本特性以及激光加热过程中温度烧蚀前沿稠密等离子体子区的预热效应、临界面附近的限流效应,以及冕区的反扩散与限流效应,得到了经典Spitzer-Harm理论描述的电子热传导随自生磁场的演化情形。数值模拟表明:在线性强激光作用下,由于电子初始时刻的无规则热运动,在等离子体上激发电磁不稳定性,而不稳定性激发的强电磁场使电子束在非常短的距离内沉积能量,同时对在激光有质动力推开电子时形成的超热电子能量输运产生抑制作用。  相似文献   

10.
At Shanghai Jiao Tong University (SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams of reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.  相似文献   

11.
Nowadays there is great progress on laser-driven plasma-based accelerators by exploiting petawatt-class lasers, where for one aspect electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to laser wakefield acceleration mechanism. While to date, worldwide researches on laser-plasma accelerators are focused to create compact particle and radiation sources for applications in a wide range of sciences, including basic, medical and industrial sciences, there are great interests in applications for high energy physics and astrophysics that explore unprecedented high-energy frontier phenomena, for which laser plasma accelerator concepts provide us with promising tools. Here, our endeavors toward “extreme light” in the IZEST are envisaged for the next 30 years perspective and issues on laser plasma electron acceleration beyond 100 GeV and furthermore toward the TeV regime, aiming at high energy physics applications.  相似文献   

12.
李玉同  徐妙华  张杰 《物理》2007,36(1):39-45
近几年来,由于高功率激光技术的不断发展,利用超强激光脉冲与等离子体相互作用产生高能离子束的研究得到了极大推动.实验和理论模拟均发现,在超强激光脉冲与等离子体相互作用过程中,可以产生高亮度、小尺寸、方向性好的高能质子束和高能重离子束.这种基于超强激光的高能离子源在先进离子束成像技术、惯性约束聚变混合“快点火”、新型台面离子加速器以及医疗等方面都有很诱人的应用前景.文章主要介绍了超强激光与固体靶相互作用中高能离子束(尤其是质子束)的加速机制、高能离子束特性、常用测量方法及其潜在应用,并对最新的研究进展进行了简单介绍.  相似文献   

13.
准分子激光等离子体开关控制脉宽研究   总被引:2,自引:1,他引:1       下载免费PDF全文
 利用准分子激光等离子体技术,在紫外预电离XeCl准分子激光器上获得了最短1.58 ns的短脉冲激光输出。实验中分析了聚焦到薄膜表面的光束能量密度对所产生的等离子体密度的影响,并对不同等离子体密度及维持时间情况下脉冲压缩效果进行了讨论,给出了激光器谐振腔在稳定腔及非稳腔两种工作方式下的实验结果。激光器在稳定腔工作时,脉宽可压缩至2.87 ns;采用非稳腔结构时,在脉冲能量不变情况下减小聚焦光斑面积,提高入射到薄膜表面的能量密度,得到了最短1.58 ns的短脉冲激光输出。该技术适用于任何其它准分子器件。  相似文献   

14.
Coherent radiation in the 0.3-3 THz range has been generated from femtosecond electron bunches at a plasma-vacuum boundary via transition radiation. The bunches produced by a laser-plasma accelerator contained 1.5 nC of charge. The THz energy per pulse within a limited 30 mrad collection angle was 3-5 nJ and scaled quadratically with bunch charge, consistent with coherent emission. Modeling indicates that this broadband source produces about 0.3 microJ per pulse within a 100 mrad angle, and that increasing the transverse plasma size and electron beam energy could provide more than 100 microJ/pulse.  相似文献   

15.
In this paper, we present a hybrid laser-plasma ablation method for material processing applications. For this purpose, a coaxial configuration consisting of a low-temperature atmospheric pressure argon plasma beam and a Nd:YAG-laser at a wavelength of 355 nm was used. Both pure laser ablation and hybrid laser-plasma ablation experiments were performed on aluminum at different laser energies and numbers of laser pulses. In the case of hybrid ablation, both the depth and volume ablation rates were increased significantly in comparison to pure laser ablation. This effect is described by a linear interrelationship of both the ablation rate and the particularly applied laser energy and is thus due to energetic synergies. Such behavior can be explained by the de-excitation of argon plasma species and an accompanying energy deposition at the generated debris and the sample surface. The energetic effect was found to abate with increasing ablation depth. However, considerable improvements in terms of ablation rate are achieved in the near-surface depth range of approx. 500 microns.  相似文献   

16.
A highly relativistic electron beam produced by a 50 TW laser-plasma accelerator has been characterized by photonuclear techniques. The beam has large divergence that increases with plasma density. The electron yield also increases with plasma density and reaches up to 4x10(11) electrons ( >10 MeV), with beam current approaching the Alfvén limit. Effective electron temperatures exceeding 8 MeV are found, leading to an order of magnitude higher photonuclear activation yield than in solid target experiments with the same laser system.  相似文献   

17.
The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.  相似文献   

18.
The dynamics of plasma electrons in the focus of a petawatt laser beam are studied via measurements of their x-ray synchrotron radiation. With increasing laser intensity, a forward directed beam of x rays extending to 50 keV is observed. The measured x rays are well described in the synchrotron asymptotic limit of electrons oscillating in a plasma channel. The critical energy of the measured synchrotron spectrum is found to scale as the Maxwellian temperature of the simultaneously measured electron spectra. At low laser intensity transverse oscillations are negligible as the electrons are predominantly accelerated axially by the laser generated wakefield. At high laser intensity, electrons are directly accelerated by the laser and enter a highly radiative regime with up to 5% of their energy converted into x rays.  相似文献   

19.
The transverse dynamics of a 28.5-GeV electron beam propagating in a 1.4 m long, (0-2)x10(14) cm(-3) plasma are studied experimentally in the underdense or blowout regime. The transverse component of the wake field excited by the short electron bunch focuses the bunch, which experiences multiple betatron oscillations as the plasma density is increased. The spot-size variations are observed using optical transition radiation and Cherenkov radiation. In this regime, the behavior of the spot size as a function of the plasma density is well described by a simple beam-envelope model. Dynamic changes of the beam envelope are observed by time resolving the Cherenkov light.  相似文献   

20.
王峰  彭晓世  杨冬  李志超  徐涛  魏惠月  刘慎业 《物理学报》2013,62(17):175202-175202
激光与等离子体相互作用研究是惯性约束聚变 (ICF) 研究中的重要研究内容. 为了定量研究神光III原型实验中激光与等离子体互作用产生的散射光能量和光谱, 研制了全孔径和近背向散射诊断系统, 并介绍了全孔径和近背反测量系统的光路结构. 对采用连续相位板技术后引起的激光焦斑变化进行了分析. 介绍了采用全孔径和近背向散射诊断系统在神光III原型上完成的考核束匀滑实验效果的实验, 对比了使用束匀滑前后背向散射系统获得的散射光份额和散射光谱分布. 实验发现, 在神光III原型使用800J能量 8束打靶的条件下, 使用束匀滑后背向散射光份额可以降低到5%以下, 其散射光谱也更加集中. 这些数据为黑腔能量学等研究的进一步发展起到重要的促进作用. 关键词: 激光散射 连续相位板 黑腔 光谱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号