首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
于全芝  李玉同  张杰 《物理》2003,32(9):585-589
超短超强激光与液体靶相互作用时表现出许多有趣的特点,这明显区别于激光脉冲与固体或气体靶的相互作用情况.文章分别介绍了激光诱发等离子体所产生的高压冲击波、激光空泡、X射线、高能超热电子以及白光,对它们的产生机制及其各自的显著特征进行了综合描述.文章最后对超短超强激光脉冲与各种不同形态的液体靶相互作用的应用前景作了简单介绍。  相似文献   

2.
超热电子的产生与定向发射   总被引:3,自引:0,他引:3  
郑志远  张杰 《物理》2004,33(6):424-429
在超短超强激光与等离子体相互作用的过程中,等离子体中的一部分电子通过各种机制吸收能量转变成为高能的超热电子.它们不仅是惯性约束核聚变“快点火”过程中的能量载体,对激光脉冲在等离子体中的传输、能量沉积、转化等一系列过程也都发挥着重要的作用.文章对超短超强激光与等离子体相互作用过程中超热电子产生的主要物理机制以及影响超热电子定向发射的因素进行了介绍.  相似文献   

3.
 对线极化、圆极化的超短超强激光脉冲与靶前有一段低密度预等离子体的固体靶的相互作用进行了理论和粒子模拟研究。激光通过有质动力加速机制加速预等离子体中的电子,研究了电子获得的最大能量随激光强度和预等离子体密度的变化。当激光脉冲与靶直接作用时,靶中的电子由于J×B机制而得到加速,所获得的能量比预等离子体中电子低。研究表明,在超短超强激光脉冲与固体靶相互作用中,预等离子体的存在有利于高能电子的产生。  相似文献   

4.
实验研究了超短超强激光脉冲与薄膜靶相互作用中产生的超热电子角分布随激光入射角的变化.在靶面方向观测到一束方向性很好的高能超热电子.该高能超热电子束的电子数目随着激光入射角的增大而增大.对结果的分析表明,表面准静态磁场是导致表面电子产生的主要原因. 关键词: 超热电子 表面准静态磁场 超强激光脉冲与等离子体相互作用  相似文献   

5.
激光加速高能质子实验研究进展及新加速方案   总被引:2,自引:0,他引:2       下载免费PDF全文
利用超强激光与等离子体相互作用来加速高能离子是激光等离子体物理及加速器物理领域的研究热点.经过了近20年的发展,激光离子加速已取得丰硕成果,催生了一批新的应用.本文概述了国内外激光离子加速所取得的标志性实验研究进展,围绕高能质子的产生这一关键问题进行了深入的探讨,介绍了近几年来发展的有潜力的新加速方案.  相似文献   

6.
强流高能离子束可以准等容加热任何高密度样品,制备出尺度大、状态均匀、内部无冲击波的高能量密度物质,为实验室研究高能量密度物理提供了一种独特的新手段。介绍了国内外典型的强流重离子加速器装置及其与高能量密度物理相关的关键参数设计和研究规划;展示了基于粒子和流体模拟的离子束驱动高能量密度物质产生和状态演化规律进展;介绍了一套兼具高时空分辨和高穿透力的高能电子成像诊断技术;分析了中低能区离子束与等离子体相互作用过程中的碰撞和电荷交换微观机制,以及激光加速超短超强离子束在等离子体中的非线性输运和欧姆能损机制。  相似文献   

7.
超强激光场物理学   总被引:1,自引:0,他引:1  
孟绍贤 《物理学进展》1999,19(3):236-269
首先,评述了超强激光场的理论结果;其次,描述了超短光脉冲在密的气体和光学介质传播中的自作用;第三,评述了强场离化无碰撞等离子体中高度离化的离子产生,及高功率超短激光脉冲巨大强度的电场可用于电子加速;第四,分析了超短声脉冲和无线电脉冲的产生和应用,讨论了在不同条件下,激光辐射谐波和 X 射线激光的产生,进一步评述了超强激光脉冲与凝聚靶相互作用可以产生接近星体物质参数的高温、超密、强磁场和巨大压力等离子体;最后,简要叙述了激光激发核、核反应,高能电子─光子相互作用的可能效应及可能进行的实验。  相似文献   

8.
孟绍贤 《物理学进展》2011,19(3):236-269
首先,评述了超强激光场的理论结果;其次,描述了超短光脉冲在密的气体和光学介质传播中的自作用;第三,评述了强场离化无碰撞等离子体中高度离化的离子产生,及高功率超短激光脉冲巨大强度的电场可用于电子加速;第四,分析了超短声脉冲和无线电脉冲的产生和应用,讨论了在不同条件下,激光辐射谐波和 X 射线激光的产生,进一步评述了超强激光脉冲与凝聚靶相互作用可以产生接近星体物质参数的高温、超密、强磁场和巨大压力等离子体;最后,简要叙述了激光激发核、核反应,高能电子─光子相互作用的可能效应及可能进行的实验。  相似文献   

9.
李雪梅  王玉华 《计算物理》2018,35(2):187-193
利用超强超短激光脉冲产生的高能质子束的库仑能量损失可以重建稠密等离子体的二维密度分布,使用同时迭代重建算法(SIRT算法)研究等离子体二维密度重建的影响因素.研究等离子体密度梯度、密度量级和质子束入射能量对重建误差的影响,分析质子束成像探测等离子体密度之前获得等离子体大概方位的重要性,通过数据拟合确定了能量噪声和重建误差之间的解析关系式.  相似文献   

10.
为了克服激光加速中强流离子束空间电荷效应对粒子输运的影响,提出一种利用两块不同密度的固体靶先后和一束强度约为1022 W/cm2、脉冲长度为5T(T为激光周期)的超强脉冲激光相互作用的方案,实现了中性等离子体块的加速。通过一维PIC数值模拟研究发现,在合适的参数下,加速后的电子与质子几乎以相同的速度共同飞行长达60λ(λ为激光波长)的距离,其中质子与电子的能量分别为GeV和100MeV量级。  相似文献   

11.
The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30 μm, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e.g., in proton-driven fast ignition.  相似文献   

12.
The possibility of using high-intensity laser-produced plasmas as a source of energetic ions for heavy ion accelerators is addressed. Experiments have shown that neon ions greater than 6 MeV can be produced from gas jet plasmas, and well-collimated proton beams greater than 20 MeV have been produced from high intensity laser solid interactions. The proton beams from the back of thin targets appear to be more collimated and reproducible than are high-energy ions generated in the ablated plasma at the front of the target and may be more suitable for ion injection applications. Lead ions have been produced at energies up to 430 MeV  相似文献   

13.
Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astroparticle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology.  相似文献   

14.
The field of the uncharted territory of high-intensity laser interaction with matter is confronted with new exotic phenomena and, consequently, opens new research perspectives. The intense laser beams interacting with a gas or solid target generate beams of electrons, protons and ions. These beams can induce nuclear reactions. Electrons also generate ions high-energy photons via bremsstrahlung processes which can also induce nuclear reactions. In this context a new research domain began to form in the last decade or so, namely nuclear physics with high power lasers. The observation of high brilliance proton beams of tens of MeV energy from solid targets has stimulated an intense research activity. The laser-driven particle beams have to compete with conventional nuclear accelerator-generated beams. The ultimate goal is aiming at applications of the laser produced beams in research, technology and medicine. The mechanism responsible for ion acceleration are currently subject of intensive research in many laboratories in the world. The existing results, experimental and theoretical, and their perspectives are reviewed in this article in the context of IZEST and the scientific program of ELI-NP.  相似文献   

15.
Intense beams of protons and heavy ions have been observed in ultra-intense laser-solid interaction experiments. Thereby, a considerable fraction of the laser energy is transferred to collimated beams of energetic ions (e.g. up to 50 MeV protons; 100 MeV fluorine), which makes these beams highly interesting for various applications. Experimental results indicate very short pulse duration and an excellent beam quality, leading to beam intensities in the TW range. To characterize the beam quality and its dependence on laser parameters and target conditions, we performed experiments at several high-power laser systems. We found a strong dependence on the target rear surface conditions allowing to tailor the ion beam by an appropriate target design. We also succeeded in the generation of heavy ion beams by suppressing the proton amount at the target surface. We will present recent experimental results demonstrating a transverse beam emittance far superior to accelerator-based ion beams. Finally, we will discuss the prospect of laser-accelerated ion beams as new diagnostics in laser-solid interaction experiements. Special fields of interest are proton radiography, electric field imaging, and relativistic electron transport inside the target.  相似文献   

16.
Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities. Particle-in-cell simulations also indicate the development of such instabilities. This is a regime of particular interest for inertial confinement fusion applications of these beams (i.e., "fast ignition").  相似文献   

17.
Experimental data from the Trident Laser facility is presented showing quasimonoenergetic carbon ions from nm-scaled foil targets with an energy spread of as low as ±15% at 35?MeV. These results and high-resolution kinetic simulations show laser acceleration of quasimonoenergetic ion beams by the generation of ion solitons with circularly polarized laser pulses (500?fs, λ=1054 nm). The conversion efficiency into monoenergetic ions is increased by an order of magnitude compared with previous experimental results, representing an important step towards applications such as ion fast ignition.  相似文献   

18.
Highly efficient relativistic-ion generation in the laser-piston regime   总被引:1,自引:0,他引:1  
An intense laser-plasma interaction regime of the generation of high density ultrashort relativistic ion beams is suggested. When the radiation pressure is dominant, the laser energy is transformed efficiently into the energy of fast ions.  相似文献   

19.
1 Introduction Ion sources with wide energy and current ranges are used extensively in industrial applications such as ion implantation, etching, and deposition. Broad beam ion sources with a uniform current distributions are needed for many industrial applications and development of commercial ion bean technologies for surface modification of materials is impossible without highly efficient, simple, and dependable ion sources. These and other needs have spurred the development of high efficiency ion sources that can produce ion beams with high energy and current and require low or no maintenance.  相似文献   

20.
Nowadays there is great progress on laser-driven plasma-based accelerators by exploiting petawatt-class lasers, where for one aspect electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to laser wakefield acceleration mechanism. While to date, worldwide researches on laser-plasma accelerators are focused to create compact particle and radiation sources for applications in a wide range of sciences, including basic, medical and industrial sciences, there are great interests in applications for high energy physics and astrophysics that explore unprecedented high-energy frontier phenomena, for which laser plasma accelerator concepts provide us with promising tools. Here, our endeavors toward “extreme light” in the IZEST are envisaged for the next 30 years perspective and issues on laser plasma electron acceleration beyond 100 GeV and furthermore toward the TeV regime, aiming at high energy physics applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号