首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用真空蒸镀的方法以星形六苯芴类新材料1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene(HKEthFLYPh)作为能量传输层制备了indium-tin-oxide(ITO)/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-(1,1'-biphenyl)-4,4′-diamine(NPB)/HKEthFLYPh/5,6,11,12-tetraphenylnaphtacene(rubrene)/tris(8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag的白色有机电致发光器件. NPB和Alq3分别作为蓝色发光层和电子传输层,NPB和Alq3之间的超薄Rubrene层 作为黄色发光层. 结果表明,超薄rubrene层改善了白光器件的色纯度与稳定性,器件的光谱及色坐标几乎不随驱动电压的变化而改变.当rubrene层厚度为0.3 nm时,器件的Commissions Internationale De L′Eclairage (CIE)色坐标为(0.32,0.33). 驱动电压为18 V时,器件的最大亮度为4816 cd/m2.  相似文献   

2.
采用真空热蒸镀的方法,在常规的双层器件结构的基础上,设计了三层双异质结有机电致发光器件(OLED):indium-tin oxide(ITO)/N,N′-diphenyl-N,N′-bis(1-naphthyl)(1,1′-biphenyl)-4,4′-diamine(NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)/8-hydroxyquinoline aluminum(Alq3)/Mg∶Ag。通过对器件的电致发光(EL)光谱及器件性能的表征,研究了不同超薄层BCP的厚度对OLED器件性能的影响。结果表明,当超薄层BCP的厚度从0.1nm逐渐增加到4.0nm时,器件的EL光谱实现了绿光→蓝绿光→蓝光的变化;BCP层有效地调节了载流子的复合区域,改变了器件的发光颜色,提高了器件的亮度和发光效率。  相似文献   

3.
针对新型芴类小分子材料6,6′-(9H-fluoren-9,9-diyl)bis(2,3-bis (9,9-dihexyl-9H-fluoren-2-yl) quinoxaline) (BFLBBFLYQ)和空穴传输材料N,N′-biphenyl-N,N′-bis-(3-methylphenyl)-1, 1′-biphenyl-4,4′-diamine(TPD)及二者混合体系的荧光光谱和吸收光谱进行了测试表征,制备了结构为indium-tin oxide (ITO)/BFLBBFLYQ∶TPD/Alq/Mg∶Ag的双层有机电致发光器件。研究发现,BFLBBFLYQ∶TPD混合薄膜存在一个不同于单独分子薄膜的低能量发射光谱,发光峰在530 nm处,与tris(8-hydroxyquinolinato)aluminum(Alq)薄膜的荧光光谱相同,亦与结构为BFLBBFLYQ∶TPD/Alq双层器件的电致发光光谱相同。鉴于荧光染料4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran(DCJTB)的吸收光谱与Alq的荧光光谱有很好的重叠,利用Forster能量传递理论,将DCJTB红色染料引入双层器件,通过调节掺杂位置,考察器件的发光光谱情况,进而对BFLBBFLYQ∶TPD/Alq双层器件的载流子复合区域进行了研究。结果表明,双层器件的载流子复合区域位于BFLBBFLYQ∶TPD/Alq界面附近的Alq层内。  相似文献   

4.
通过调控p型半导体N,N′-bis(naphthalen-1-y)-N,N′-bis(phenyl)benzidine(NPB)层的厚度,制备了结构为ITO/NPB/aluminum(Ⅲ)bis(2-methyl-8-quinolinato)-4-phenylphenolate(BAlq)/NPB(0~18nm)/tri-(8-hydroxyquinoline)-aluminum(Alq3)/Mg:Ag的多层有机电致发光器件.分析结果表明,在该类异质结器件中,NPB不仅可以作为空穴传输材料,在适当的厚度范围内,它还可以起到调控载流子复合区域的作用;当NPB厚度在0~18nm之间变化时,随着其厚度增加器件发光颜色可由蓝色变为绿色.通过器件发光光谱的表征可以得知,器件的载流子复合区域相应地由BAlq层转移至Alq3层.  相似文献   

5.
制备了一种结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP:TBPe/BAlq:rubrene/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.其中空穴传输型主体NPB掺杂磷光染料Ir(piq)2(acac)作为红色发光层,双载流子传输型主体4,4′-N,N′-dicarbazole-biphenyl (CBP)掺杂TBPe作为蓝色发光层,电子传输型主体材料BAlq掺杂rubrene作为绿色发光层.以上发光层夹于 关键词: 电致发光 磷光染料 异质结 白光  相似文献   

6.
主要报道在器件结构为玻璃衬底/Ag(阳极)/NPB(空穴传输层)/Alq3(电子传输及发光层)/Sm(半透明阴极)/Alq3的顶发射有机电致发光器件中,利用氧等离子体对阳极银的表面进行处理来降低阳极和空穴传输层(Ag/NPB)界面处的空穴注入势垒,提高顶发射有机电致发光器件的性能。主要研究了氧等离子体处理时间对阳极银和顶发射有机电致发光器件光电特性的影响。紫外光电子能谱表明,氧等离子体处理能有效降低Ag/NPB界面处的空穴注入势垒。通过优化处理时间获得最佳器件性能,优化后的器件最大效率可达6.14cd/A。  相似文献   

7.
采用Li3N掺杂电子注入层Alq3∶Li3N,制作了一种结构为ITO/Alq3 Alq3∶Li3N/Alq3/NPB/MoO3/Al的倒置底发射有机发光器件.其中ITO玻璃作为透明阴极,金属Al作为顶部阳极,在ITO阴极与电子传输层之间加入Li3N n型掺杂层,改善了该器件的电子注入和传输能力|在Al阳极与空穴传输层之间加入MoO3缓冲层,降低了Al阳极与NPB之间较大的空穴注入势垒,改善了空穴注入能力.实验表明:此结构的倒置底发射有机发光器件性能可达到传统结构的常用有机发光器件如ITO/NPB/Alq3/LiF/Al的性能,完全可以满足非晶硅薄膜晶体管有源有机发光器件中驱动电路的匹配及性能要求.  相似文献   

8.
基于PVK∶NPB掺杂体系的有机电致发光器件的性能   总被引:4,自引:2,他引:2       下载免费PDF全文
利用溶液旋涂的方法,通过改变复合功能层中poly(N-vinylcarbazole)(PVK)和N,N′-bis-(1-naph-thyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)的质量比,制备结构为indium-tin-oxide(ITO)/PVK:NPB/2,9-dimenthyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Mg:Ag的有机电致发光器件,并对器件的电致发光特性进行了表征。研究结果表明,当复合功能层中PVK和NPB的质量比为1:1时器件性能最好,在该器件的电致光谱中,除了NPB的本征谱峰外,在长波方向还出现了一个位于640nm处的谱峰,这是PVK和NPB产生的电致激基复合物发光,并且随着驱动电压的增加,电致激基复合物的发光强度也相对增强。  相似文献   

9.
新型有机光电开关器件   总被引:1,自引:0,他引:1  
结合有机发光和光电二极管器件,制作了一种新型的有机光电开关器件。器件结构为:ITO/NPB/Alq3/CuPc/C60/NPB/Alq3/LiF/Al。其中,ITO(indium tin oxide,氧化铟锡)为正极,NPB[N,N′-di(naphthaleneyl)N,N′-diphenylbenzidine]/Alq3[tris-(8-hydro--xyquinoline,8-羟基喹啉铝)aluminum]作为电致发光层,CuPc(Copper Phthalocyanine,酞菁铜)/C60为光电转换层,LiF/Al为器件负极。即两个电致发光层和一个光电转换层组成的三明治型结构。从低向高施加电压和从高向低施加电压时,该器件呈现出不同的电流密度-电压(J-V)和功率密度-电压(P-V)曲线,即器件在相同的电压下可得到不同的电流密度值和功率密度值(亮度值),利用高亮度状态(ON)到低亮度状态(OFF)的转变,可实现开关型有机电致发光器件。器件的光电转换层吸收效率为0.153%。  相似文献   

10.
有机发光材料DPVBi的空穴阻挡特性   总被引:5,自引:1,他引:4       下载免费PDF全文
讨论了有机发光材料4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl(DPVBi),在结构为ITO/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine(NPB)/DPVBi/tris-(8-hydroxyquinoline)aluminum(Alq3)/LiF/Al的有机电致发光器件中所表现出来的空穴阻挡特性。通过实验可以看到,当NPB的厚度小于DPVBi的厚度时,DPVBi对空穴的阻挡作用和其自身的厚度有关,厚度越大阻挡能力越强。DPVBi的厚度一定(120nm)且不足以将空穴完全限制于DPVBi层内时,其对空穴的阻挡能力,随着NPB厚度(30~60nm)的增加而相对减弱。当NPB的厚度大于DPVBi的厚度时,进入DPVBi层的空穴,随着它们之间厚度差别的增大而增加,从而使器件的光谱半峰全宽加大。这几条规律对于制作基于DPVBi的有机蓝光和有机白光器件具有一定的指导意义。  相似文献   

11.
本文研究了贵金属标准溶液除氯离子的有关问题,解决了高纯硝酸银中贵金属等杂质元素的标样配制,以硝酸银直接压样于普通电极中直流电弧激发,可测定99.0~99.99%的高纯银,该方法简便、快速、准确。  相似文献   

12.
本文提供了一种测定金属硅中B,Fe,Al,Ca,Mn等14个杂质元素的ICP-AES方法,在样品处理过程中,加入适量体积的甘露醇能够抑制B的挥发。用本方法测定了一个国家地球化学标准样(GSR-4),结果令人满意。  相似文献   

13.
纯硒中杂质元素的ICP-AES测定   总被引:1,自引:0,他引:1  
电感耦合等离子体-原子发射光谱同时测定纯硒中的碲、铅、铋、锑、铜、铁、镍、铝、锡、砷和硼12种元素的含量,优化出各元素的分析波长和分析条件;用基体匹配补偿基体效应,方法简单,快速可靠,样品回收率为94%-107%.  相似文献   

14.
ICP—AES法直接测定锡锭中的As,A1,Bi,Cd,Cu,Fe,Pb,Se,Sb,Zn   总被引:4,自引:0,他引:4  
以电荷耦合器件为检测器的全谱直读等离子体光谱仪直接测定锡锭中As、A1、Bi、Cd、Cu、Fed、Pb、Se、Sb、Zn十种杂质元素的含量。该方法简便、快速且具有比化学法更低的检出限,加标回收试验结果不明,回收率为92%-105%,RSD均小于1.5%。  相似文献   

15.
梁亚群 《光谱实验室》1998,15(5):101-104
本文介绍了电感耦合等离子体发射光谱法(ICP-AES)测定高纯铼酸铵中12个杂质元素的方法。采用挥发健康基体,探讨了高铼酸铵基体的干扰及其消除办法。ICP-AES测定结果的准确度和精密度均能满足分析要求。  相似文献   

16.
17.
ICP—AES法测定铁矿中铝,钙,镁,锰,钴,铜,钠和钾   总被引:3,自引:0,他引:3  
本文研究了ICP-AES法测定铁矿中铝,钙、镁、锰、钴、铜、钠和钾的方法。对仪器工作参数,共存元素的光谱干扰和基体效应干扰进行了探讨。采用向标准系列中加入铁基空白溶液建立工作曲线,试样经酸处理后即可直接测定。本方法获得了良好的回收率(95~103%)和变异系数(0.5~1.3%,n=11),同原子吸收法进行比对试验,结果一致。  相似文献   

18.
以电荷耦合器件为检测器的全谱直读等离子体光谱仪直接测定锡锭中As、Al、Bi、Cd、Cu、Fe、Pb、Se、Sb、Zn十种杂质元素的含量.该方法简便、快速且具有比化学法更低的检出限,加标回收试验结果表明,回收率为92%-105%,RSD均小于1.5%.  相似文献   

19.
Hugo O. Mosca 《Surface science》2007,601(15):3224-3232
The surface energy for different surface orientations of the solid solutions as a function of concentration formed by Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W is computed and analyzed using the BFS method for alloys. Similarities and differences among the different binary alloys are examined in terms of strain and chemical effects.  相似文献   

20.
Brudnyi  V. N. 《Russian Physics Journal》2017,59(12):2186-2190
Russian Physics Journal - On the basis of the charge neutrality concept, the analysis is fulfilled of the experimental data on the electron properties of the defective semiconductors after the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号