首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast laser ablation of ITO thin film coated on the glass has been investigated as a function of laser fluence as well as the number of laser pulses. The ablation threshold of ITO thin film was found to be 0.07 J/cm2 that is much lower than that of glass substrate (about 1.2–1.6 J/cm2), which leads to a selective ablation of ITO film without damage on glass substrate. The changes in the electrical resistance and morphology of ablated trench of ITO electrode were found to be strongly dependent on the processing conditions. We present the performance of organic light-emitting diodes (OLED) fabricated with ITO electrode patterned by ultrafast laser ablation.  相似文献   

2.
The laser direct patterning technique is one of the new methods of direct etching process to replace the conventional photolithography. In this experiment, a Q-switched diode-pumped Nd:YVO4 (λ = 1064 nm) laser was used to produce the indium-tin oxide (ITO) patterns with a complex T-shaped structure on glass substrate. The results showed that the overlapping rate of laser beam had a major effect on the quality of the edge of the ITO electrode. When the overlapping rate was about 75%, it was possible to obtain optimum linearity in the edge of patterned ITO electrode. By using the optimum conditions of 75% overlapping rate, 500 mm/s scanning speed, and 40 kHz repetition rate, an alternative current plasma display panels (AC PDPs) with T-shaped ITO electrode was fabricated and characterized. The discharging results showed that the AC PDPs with the laser ablated T-shaped ITO electrode had a better discharging characteristics compared to the conventional sample with wet-etched stripe-type ITO electrode.  相似文献   

3.
The purpose of this study is to pattern the fluorine-doped tin oxide thin film deposited on the soda-lime glass substrates for touch screen applications by ultraviolet laser. The patterned film structures provide the electrical isolation and prevent the electrical contact from each region for various touch screens. The surface morphology, edge quality, three-dimensional topography, and profile of isolated lines and electrode structures after laser patterning were measured by a confocal laser scanning microscope. Moreover, a four-point probe instrument was used to measure the sheet resistance before and after laser patterning on film surfaces and also to discuss the electrical property at different laser spot overlaps. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surfaces that could obtain an excellent machined quality of edge profile. All sheet resistance values of film surfaces near the isolated line edge were larger than the original ones. Moreover, the sheet resistance values increased with increasing laser spot overlapping area.  相似文献   

4.
Laser dry etching by a laser driven direct writing apparatus has been extensively used for the micro- and nano-patterning on the solid surface. The purpose of this study is to pattern the PEDOT:PSS thin film coated on the soda-lime glass substrates by a nano-second pulsed ultraviolet laser processing system. The patterned PEDOT:PSS film structure provides the electrical isolation and prevents the electrical contact from each region for capacitive touch screens. The surface morphology, geometric dimension, and edge quality of ablated area after the variety of laser patternings were measured by a 3D confocal laser scanning microscope. After the single pulse laser irradiation, the ablation threshold of the PEDOT:PSS film conducted by the nano-second pulsed UV laser was determined to be 0.135±0.003 J/cm2. The single pulse laser interacted region and the ablated line depth increased with increasing the laser fluence. Moreover, the inner line width of ablated PEDOT:PSS films along the patterned line path increased with increasing the laser fluence but the shoulder width increased with decreasing fluence, respectively. The clean, smooth, and straight ablated edges were accomplished after the electrode patterning with the laser fluence of 1.7 J/cm2 and 90 % overlapping rate.  相似文献   

5.
High speed laser patterning of indium tin oxide thin films on glass is part of the production method used to produce transparent conductive electrodes for plasma display panels. Such a design consists of rows of repeating electrode structures which cover the active area of the display. Whilst the patterning process for such electrode structures exceeds the industrial acceptance criteria there are certain features that are yet to be fully understood. The visible line that occurs in-between two adjacent laser processed areas, commonly known as a stitch line, is one such feature. Previously published research claimed that the stitch line was caused by incomplete removal of the thin film however experimental results presented within this paper demonstrate that this cannot be the case and show that the stitch line is formed by redeposition of the plume of ablated material within the area of overlap with the previous pulse, and that heating of the sample by the second pulse plays a key role in stitch line formation.  相似文献   

6.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

7.
Fe-doped titania films were deposited by RF sputtering onto different substrates (glass and ITO/glass) in the same deposition run. The rutile nanocrystalline structure of Fe-doped thin films deposited on glass substrates and anatase nanocrystalline structure of Fe-doped thin films deposited on ITO/glass substrates were evidenced by XRD. SEM investigations showed a smooth surface with a dense nanostructure. XPS study evidenced an almost stoichiometric composition with different iron contents. EPR and XPS studies evidenced that iron entered into TiO2 lattice by substitution, as isolated and dimer species. In Fe-doped thin films deposited on ITO/glass substrates the iron content is ten times higher than in Fe-doped thin films deposited on glass substrates and that a part of them entered as Fe2+.  相似文献   

8.
Selective laser patterning of thin films in a multilayered structure is an emerging technology for process development and fabrication of optoelectronics and microelectronics devices. In this work, femtosecond laser patterning of electrochromic Ta0.1W0.9Ox film coated on ITO glass has been studied to understand the selective removal mechanism and to determine the optimal parameters for patterning process. A 775 nm Ti:sapphire laser with a pulse duration of 150 fs operating at 1 kHz was used to irradiate the thin film stacks with variations in process parameters such as laser fluence, feedrate and numerical aperture of objective lens. The surface morphologies of the laser irradiated regions have been examined using a scanning electron microscopy and an optical surface profiler. Morphological analysis indicates that the mechanism responsible for the removal of Ta0.1W0.9Ox thin films from the ITO glass is a combination of blistering and explosive fracture induced by abrupt thermal expansion. Although the pattern quality is divided into partial removal, complete removal, and ITO film damage, the ITO film surface is slightly melted even at the complete removal condition. Optimal process window, which results in complete removal of Ta0.1W0.9Ox thin film without ablation damage in the ITO layer, have been established. From this study, it is found that focusing lens with longer focal length is preferable for damage-free pattern generation and shorter machining time.  相似文献   

9.
Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.  相似文献   

10.
Maskless laser patterning of indium tin oxide (ITO) thin films was studied by the use of a diode-pumped Q-switched Nd:YLF laser. The ITO films were sputter-deposited either on lime glass, the standard substrate material for flat panel display applications, or fused quartz so that the efficiency of laser patterning as a function of substrate absorption could be studied. The laser wavelength was varied among infrared (5=1047 nm), visible (5=523 nm), and ultraviolet (5=349 nm and 5=262 nm). It is observed that strong light absorption by the substrate is a crucial requirement for a residue-free patterning of the ITO film. Observations and numerical calculations of the laser-induced surface temperature indicate that material removal occurs via thermal vaporization and that other mechanisms such as photochemical decomposition or spallation can be neglected.  相似文献   

11.
Here we introduce a facile method to fabricate patterned indium tin oxide (ITO) thin films via selective laser ablation at ambient conditions. By scanning the ITO thin films with focused Nd: YAG pulsed laser, the ITO thin films were selective ablated and patterned without using any conventional chemical etching or photolithography steps. Then we investigated the effects of scanning rate for the structure, morphology and optical properties of patterned ITO thin film. These results indicate that the epsilon-near-zero (ENZ) wavelength of ITO thin films can be tuned from 1100 nm to 1340 nm by adjusting the period of the micro-hole array in microstructure. The nonlinear absorption response of patterned ITO films was about 2.85 time than of the as-deposited ITO thin film. Additionally, the results of the Finite-Difference Time-Domain (FDTD) simulation are in good agreement with those of the experiments.  相似文献   

12.
A Nd:YAG laser operating at the fundamental wavelength (1064 nm) and at the second harmonic (532 nm), with 9 ns pulse duration, 100–900 mJ pulse energy, and 30 Hz repetition rate mode, was employed to ablate in vacuum (10?6 mbar) biomaterial targets and to deposit thin films on substrate backings. Titanium target was ablated at the fundamental frequency and deposited on near-Si substrates. The ablation yield increases with the laser fluence and at 40 J/cm 2 the ablation yield for titanium is 1.2×1016 atoms/pulse. Thin film of titanium was deposited on silicon substrates placed at different distance and angles with respect to the target and analysed with different surface techniques (optical microscopy, scanning electron spectrosopy (SEM), and surface profile).

Hydroxyapatite (HA) target was ablated to the second harmonic and thin films were deposited on Ti and Si substrates. The ablation yield at a laser fluence of 10 J/cm 2 is about 5×1014 HA molecules/pulse. Thin film of HA, deposited on silicon substrates placed at different distance and angles with respect to the target, was analysed with different surface techniques (optical microscopy, SEM, and Raman spectroscopy).

Metallic films show high uniformity and absence of grains, whereas the bio-ceramic film shows a large grain size distribution. Both films found special application in the field of biomaterial coverage.  相似文献   

13.
利用磁控溅射技术在熔融石英衬底上沉积铟锡氧薄膜(ITO),讨论了生长温度、沉积时间、激光辐照和退火对ITO薄膜结构及形貌的影响.随着沉积温度的升高和沉积时间的延长,薄膜的晶化程度得到明显的改善,方块电阻降低,并且薄膜的形貌从光滑表面的圆形多晶颗粒演变到枝杈形貌.短时间的脉冲激光辐照使得枝杈的尖状晶粒变得圆滑,导电性略有改善.ITO薄膜在可见光区的透过率在经过空气中退火处理后明显得以改善,平均透过率可以达到80%.  相似文献   

14.
In this study, indium tin oxide (ITO) thin films were deposited by electron beam evaporation method on glass substrates at room temperature, followed by postannealing at 200 and 300 °C for annealing time up to 1 h. Fractal image processing has been applied to describe the surface morphology of ITO thin films from their atomic force microscopy (AFM) images. These topographical images of the ITO thin films indicate changes in morphological behavior of the film. Also, the results suggest that the fractal dimension D can be used to explain the change of the entire grain morphology along the growth direction.  相似文献   

15.
张传军  邬云骅  曹鸿  高艳卿  赵守仁  王善力  褚君浩 《物理学报》2013,62(15):158107-158107
在科宁7059玻璃, FTO, ITO, AZO四种衬底上磁控溅射CdS薄膜, 并在CdCl2+干燥空气380 ℃退火, 分别研究了不同衬底和退火工艺对CdS薄膜形貌、结构和光学性能的影响. 扫描电子显微镜形貌表明: 不同衬底原位溅射CdS薄膜的形貌不同, 退火后相应CdS薄膜的晶粒度和表面粗糙度明显增大. XRD衍射图谱表明: 不同衬底原位溅射和退火CdS薄膜均为六角相和立方相的混相结构, 退火前后科宁7059玻璃, FTO, AZO衬底上CdS薄膜有 H(002)/C(111) 最强衍射峰, ITO衬底原位溅射CdS薄膜没有明显的最强衍射峰, 退火后出现 H(002)/(111) 最强衍射峰. 紫外-可见分光光度计分析表明: AZO, FTO, ITO, 科宁7059玻璃衬底CdS薄膜的可见光平均透过率依次减小, 退火后相应衬底CdS薄膜的可见光平均透过率增大, 光学吸收系数降低; 退火显著增大了不同衬底CdS薄膜的光学带隙. 分析得出: 上述结果是由于不同衬底类型和退火工艺对CdS多晶薄膜的形貌、结构和带尾态掺杂浓度改变的结果. 关键词: CdS薄膜 磁控溅射 退火再结晶 带尾态  相似文献   

16.
Silver and gold thin films were deposited by pulsed laser ablation in a controlled Ar atmosphere at pressures between 10 and 100 Pa. Different morphologies, ranging from isolated nanoparticle arrays up to nanostructured thin films were observed. Fast imaging of the plasma allowed deducing the expansion dynamics of the ablated plume. Plasma velocity and volume were used together with the measured average ablated mass per pulse as input parameters in a model to estimate the average size of nanoparticles grown in the plume. The nanoparticle size is expected to decrease from 4 nm down to 1 nm with decreasing Ar pressure between 100 and 10 Pa: this was confirmed by transmission electron micrographs which indicate a reduced dispersion of particle size over narrow size ranges. The production of substrates for surface enhanced Raman scattering whose performances critically depend on nanoparticle size, shape, and structure is discussed.  相似文献   

17.
To know and to control experimental parameters that play a role in laser ablation is vital to define film properties. Among the others, laser fluence is commonly used. Yet, when plasma expansion dynamics takes place through an ambient gas, the relation between the ablated mass per pulse and gas mass is critical and till now it was poorly investigated. While the gas mass is fixed by the pressure in the deposition chamber, the ablated mass is not unequivocally determined by the laser fluence. For a given fluence value the ablated mass changes as a function of the irradiated target area. Here, we show that nanostructured silver thin films deposited keeping unaltered the laser fluence, while changing in a controlled way the irradiated area and hence the ablated mass per pulse, display markedly differentiated morphological and optical properties, as evidenced by electron microscopy and UV–Vis and Raman spectroscopies.  相似文献   

18.
Bi3.95Er0.05Ti3O12 (BErT) thin films were prepared on Pt/Ti/SiO2/Si and indium-tin-oxide (ITO)-coated glass substrates at room temperature by pulsed laser deposition. These thin films were amorphous with uniform thickness. Excellent dielectric characteristics have been confirmed. The amorphous BErT thin films deposited on the Pt/Ti/SiO2/Si and ITO-coated glass substrates exhibited almost the same dielectric constant of 52 with a low dielectric loss of less than 0.02 at 1 kHz. Meanwhile, the dielectric properties of the thin films had an excellent bias voltage stability and thermal stability. The amorphous BErT thin films might have potential applications in microelectronic and optoelectronic devices.  相似文献   

19.
In this study, a Nd:YAG laser with wavelength of 1064 nm is used to scribe the indium tin oxide (ITO) thin films coated on three types of substrate materials, i.e. soda-lime glass, polycarbonate (PC), and cyclic-olefin-copolymer (COC) materials with thickness of 20 nm, 30 nm, and 20 nm, respectively. The effect of exposure time adjusted from 10 μs to 100 μs on the ablated mark width, depth, and electrical properties of the scribed film was investigated. The maximum laser power of 2.2 W was used to scribe these thin films. In addition, the surface morphology, surface reaction, surface roughness, optical properties, and electrical conductivity properties were measured by a scanning electron microscope, a three-dimensional confocal laser scanning microscope, an atomic force microscope, and a four-point probe. The measured results of surface morphology show that the residual ITO layer was produced on the scribed path with the laser exposure time at 10 μs and 20 μs. The better edge qualities of the scribed lines can be obtained when the exposure time extends from 30 μs to 60 μs. When the laser exposure time is longer than 60 μs, the partially burned areas of the scribed thin films on PC and COC substrates are observed. Moreover, the isolated line width and resistivity values increase when the laser exposure time increases.  相似文献   

20.
R. Mariappan  T. Mahalingam  V. Ponnuswamy 《Optik》2011,122(24):2216-2219
Tin sulfide (SnS) thin films have been deposited by electrodeposition using potentiostaic method on indium doped tin oxide (ITO) coated glass substrates from aqueous solution containing SnCl2·2H2O and Na2S2O3 at various potentials. Good quality thin films were obtained at a cathodic potential −1000 mV versus saturated calomel electrode (SCE). The deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR). X-ray diffraction analysis shows that the crystal structure of SnS thin films is orthorhombic with preferential orientation along 〈0 2 1〉 plane. Microstructural parameters such as crystallite size, micro strain, and dislocation density are calculated and found to depend upon cathodic potentials. SEM studies reveal that the SnS films exhibited uniformly distributed grains over the entire surface of the substrate. The optical transmittance studies showed that the direct band gap of SnS is 1.1 eV. FTIR was used to further characterize the SnS films obtained at various potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号