首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The relation between current and illumination intensity of three structures of high‐efficiency back‐junction back‐contact silicon solar cells was analyzed. Both, n‐type cells with non‐diffused front surface and p‐type cell with floating n‐emitter show a pronounced non‐linearity due to strong illumination dependence of the passivation quality of the non‐diffused surface and the floating junction respectively. Quantum efficiency (QE) of this cell type drops significantly for the illumination lower than 0.5 suns. In contrast the QE of n‐type cells with n+‐front surface field (FSF) is linear. Low illumination current characteristics of all three of the analyzed structures could be well described by physical models. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We demonstrate industrially feasible large‐area solar cells with passivated homogeneous emitter and rear achieving energy conversion efficiencies of up to 19.4% on 125 × 125 mm2 p‐type 2–3 Ω cm boron‐doped Czochralski silicon wafers. Front and rear metal contacts are fabricated by screen‐printing of silver and aluminum paste and firing in a conventional belt furnace. We implement two different dielectric rear surface passivation stacks: (i) a thermally grown silicon dioxide/silicon nitride stack and (ii) an atomic‐layer‐deposited aluminum oxide/silicon nitride stack. The dielectrics at the rear result in a decreased surface recombination velocity of Srear = 70 cm/s and 80 cm/s, and an increased internal IR reflectance of up to 91% corresponding to an improved Jsc of up to 38.9 mA/cm2 and Voc of up to 664 mV. We observe an increase in cell efficiency of 0.8% absolute for the cells compared to 18.6% efficient reference solar cells featuring a full‐area aluminum back surface field. To our knowledge, the energy conversion efficiency of 19.4% is the best value reported so far for large area screen‐printed solar cells. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We present a novel solar cell structure, the “buried emitter solar cell”. This concept is designed for decoupling the metallisation geometry from the geometry of the carrier collecting p–n junction in back‐contacted (and in particular back‐junction) solar cells without requiring electrical insulation by dielectric layers. The most prominent features of this device structure are a carrier collecting emitter that covers close to 100% of the total cell area and an effective electrical insulation between emitter and base metallisation via a p+–n+ junction. The experimental results presented in this paper report a 19.5% efficient “buried emitter solar cell”, where 50% of the solar cell's rear side exhibit a p+–n+ junction. This preparation technique implies covering a boron‐doped p‐type emitter with an n‐type surface layer that can be efficiently surface‐passivated by thermal oxidation. All structuring of this cell has been performed by laser processing without any photo‐lithography. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In recent years Al2O3 has received tremendous interest in the photovoltaic community for the application as surface passivation layer for crystalline silicon. Especially p‐type c‐Si surfaces are very effectively passivated by Al2O3, including p‐type emitters, due to the high fixed negative charge in the Al2O3 film. In this Letter we show that Al2O3 prepared by plasma‐assisted atomic layer deposition (ALD) can actually provide a good level of surface passivation for highly doped n‐type emitters in the range of 10–100 Ω/sq with implied‐Voc values up to 680 mV. For n‐type emitters in the range of 100–200 Ω/sq the implied‐Voc drops to a value of 600 mV for a 200 Ω/sq emitter, indicating a decreased level of surface passivation. For even lighter doped n‐type surfaces the passivation quality increases again to implied‐Voc values well above 700 mV. Hence, the results presented here indicate that within a certain doping range, highly doped n‐ and p‐type surfaces can be passivated simultaneously by Al2O3. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The nanostructured surface – also called black silicon (b‐Si) – is a promising texture for solar cells because of its extremely low reflectance combined with low surface recombination obtained with atomic layer deposited (ALD) thin films. However, the challenges in keeping the excellent optical properties and passivation in further processing have not been addressed before. Here we study especially the applicability of the ALD passivation on highly boron doped emitters that is present in crystalline silicon solar cells. The results show that the nanostructured boron emitters can be passivated efficiently using ALD Al2O3 reaching emitter saturation current densities as low as 51 fA/cm2. Furthermore, reflectance values less than 0.5% after processing show that the different process steps are not detrimental for the low reflectance of b‐Si. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Plasma enhanced chemical vapor deposition (PECVD) is applied to deposit boron silicate glasses (BSG) acting as boron diffusion source during the fabrication of n‐type silicon solar cells. We characterize the resulting boron‐diffused emitter after boron drive‐in from PECVD BSG by measuring the sheet resistances Rsheet,B and saturation current densities J0,B. For process optimization, we vary the PECVD deposition parameters such as the gas flows of the precursor gases silane and diborane and the PECVD BSG layer thickness. We find an optimum gas flow ratio of SiH4/B2H6= 8% and layer thickness of 40 nm. After boron drive in from these PECVD BSG diffusion sources, a low J0,B values of 21 fA/cm2 is reached for Rsheet,B = 70 Ω/□. The optimized PECVD BSG layers together with a co‐diffusion process are implemented into the fabrication process of passivated emitter and rear totally diffused (PERT) back junction (BJ) cells on n‐type silicon. An independently confirmed energy conversion efficiency of 21.0% is achieved on 15.6 × 15.6 cm2 cell area with a simplified process flow. This is the highest efficiency reported for a co‐diffused n‐type PERT BJ cell using PECVD BSG as diffusion source. A loss analysis shows a small contribution of 0.13 mW/cm2 of the boron diffusion to the recombination loss proving the high quality of this diffusion source. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We measure surface recombination velocities (SRVs) below 10 cm/s on p‐type crystalline silicon wafers passivated by atomic–layer–deposited (ALD) aluminium oxide (Al2O3) films of thickness ≥10 nm. For films thinner than 10 nm the SRV increases with decreasing Al2O3 thickness. For ultrathin Al2O3 layers of 3.6 nm we still attain a SRV < 22 cm/s on 1.5 Ω cm p‐Si and an exceptionally low SRV of 1.8 cm/s on high‐resistivity (200 Ω cm) p‐Si. Ultrathin Al2O3 films are particularly relevant for the implementation into solar cells, as the deposition rate of the ALD process is extremely low compared to the frequently used plasma‐enhanced chemical vapour deposition of silicon nitride (SiNx). Our experiments on silicon wafers passivated with stacks composed of ultrathin Al2O3 and SiNx show that a substantially improved thermal stability during high‐temperature firing at 830 °C is obtained for the Al2O3/SiNx stacks compared to the single‐layer Al2O3 passivation. Al2O3/SiNx stacks are hence ideally suited for the implementation into industrial‐type silicon solar cells where the metal contacts are made by screen‐printing and high‐temperature firing of metal pastes. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In this paper, we demonstrate industrially feasible large‐area solar cells achieving energy conversion efficiency up to 21.63% on p‐type boron doped multicrystalline Si wafers. Advanced light trapping, passivation and hydrogenation technology are used to achieve excellent light absorption with very low surface recombination velocity. The bulk lifetime of the multi‐crystalline Si wafers used for the fabrication exceeds 500 μs after optimized gettering and hydrogenation processes. The high bulk lifetime and excellent surface passivation enable Voc to exceed 670 mV. The metallization process is carried out by screen printing and firing in a conventional belt furnace. Detailed performance parameters and quantum efficiency of the cells will be illustrated in the paper. In addition, free energy loss analysis and cell simulation are also performed using the control parameters measured during cell fabrication processes.  相似文献   

12.
Ion implantation offers new possibilities for silicon solar cell production, e.g. single side doping that can be structured in‐situ with shadow masks. While phosphorus implantations can easily be annealed at low temperature, the annealing of boron implantations is challenging. In this study, we use low energy implantations of boron (1 keV and 5 keV) with a projected range of 5.6 nm and 21.2 nm that form defects causing charge carrier recombination after a low temperature anneal (950 °C, 30 min). An ozone‐based wet chemical etching step is applied to remove this near surface damage. With increasing chemical etch‐back the electrical quality (i.e. emitter saturation current density, J0e) improves continuously. The calculated limit for J0e was reached with an abrasion of 35 nm for 1 keV and 85 nm for 5 keV implantations, showing that the relevant defects causing charge carrier recombination are located very close to the surface, corresponding to the as‐implanted profile depth. This emitter etch‐back allows for the fabrication of defect free boron doping profiles with good sheet resistance uniformity (standard deviation <2%). With the resulting characteristics (sheet resistance <100 Ω/sq, surface doping concentration >5 × 1019 cm–3, J0e < 30 fA/cm2), these boron profiles are well suited for silicon solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Passivation layer with linearly graded bandgap (LGB) was proposed to improve the performance of amorphous/crystalline silicon heterojunction (SHJ) solar cell by eliminating the large abrupt energy band uncontinuity at the a‐Si:H/c‐Si interface. Theoretical investigation on the a‐Si:H(p)/the LGB passivation layer(i)/c‐Si(n)/a‐Si:H(i)/a‐Si:H(n+) solar cell via AFORS‐HET simulation show that such LGB passivation layer could improve the solar cell efficiency (η) by enhancing the fill factor (FF) greatly, especially when the a‐Si:H(p) emitter was not efficiently doped and the passivation layer was relatively thick. But gap defects in the LGB passivation layer could make the improvement discounted due to the open‐circuit voltage (VOC) decrease induced by recombination. To overcome this, it was quite effective to keep the gap defects away from the middle of the bandgap by widening the minimum bandgap of the LGB passivation layer to be a little larger than that of the c‐Si base. The underlying mechanisms were analysed in detail. How to achieve the LGB passivation layer experimentally was also discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
Microcrystalline silicon thin film pin solar cells with a highly crystallized intrinsic μc‐Si:F:H absorber were prepared by RF‐plasma enhanced chemical vapour deposition using SiF4 as the gas precursor. The cells were produced with a vacuum break between the doped layer and intrinsic layer depositions, and the effect of different subsequent interface treatment processes was studied. The use of an intrinsic μc‐Si:H p/i buffer layer before the first air break increased the short circuit current density from 22.3 mA/cm2 to 24.7 mA/cm2. However, the use of a hydrogen‐plasma treatment after both air breaks without an interface buffer layer improved both the open circuit voltage and the fill factor. Although the material used for the absorber layer showed a very high crystalline fraction and thus an increased spectral response at long wavelengths, an open‐circuit voltage (VOC) of 0.523 V was nevertheless observed. Such a value of VOC is higher than is typically obtained in devices that employ a highly crystallized absorber as reported in the literature (see abstract figure). Using a hydrogen‐plasma treatment, a single junction μc‐Si:F:H pin solar cell with an efficiency of 8.3% was achieved.

  相似文献   


16.
This paper reports our findings on the boron and phosphorus doping of very thin amorphous silicon layers by low energy ion implantation. These doped layers are implemented into a so‐called tunnel oxide passivated contact structure for Si solar cells. They act as carrier‐selective contacts and, thereby, lead to a significant reduction of the cell's recombination current. In this paper we address the influence of ion energy and ion dose in conjunction with the obligatory high‐temperature anneal needed for the realization of the passivation quality of the carrier‐selective contacts. The good results on the phosphorus‐doped (implied Voc = 725 mV) and boron‐doped passivated contacts (iVoc = 694 mV) open a promising route to a simplified interdigitated back contact (IBC) solar cell featuring passivated contacts. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

17.
A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
Light‐induced degradation (LID) has been identified to be a critical issue for solar cells processed on boron‐doped silicon substrates. Typically, Czochralski‐grown silicon (Cz‐Si) has been reported to suffer from stronger LID than block‐cast multicrystalline silicon (mc‐Si) due to higher oxygen concentrations. This work investigates LID under conditions practically relevant under module operation on different cell types. It is shown that aluminium oxide (AlOx) passivated mc‐Si solar cells degrade more than a reference aluminium back surface field mc‐Si cell and, remarkably, an AlOx passivated Cz‐Si solar cell. The defect which is activated by illumination is shown to be doubtful a sole bulk effect while the AlOx passivation might play a certain role. This work may contribute to a re‐evaluation of the suitability of boron‐doped Cz‐ and mc‐Si for solar cells with very high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号