首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
苏方宁  邓再德 《中国物理》2006,15(5):1096-1100
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.  相似文献   

2.
A novel method of codoping the Er^3+, Yb^3+, and Ho^3+ ions in tellurite glasses is demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Three intense emission bands observed in Er^3+, Yb^3+, and Ho^3+ codoped tellurite glasses centred at 525, 547, and 657nm correspond to Er^3+: ^2H11/2 -4 ^4I15/2, Er^3+: ^4S3/2 →^4I15/2+Ho^3+: ^5S2(^5F4) → ^5Is, and Er^3+: ^4Sa/2 → ^4I15/2+Ho^3+: ^5F5 → ^5Is transitions, respectively. No visible upconversion quenching phenomenon is observed when three rare-earth ions are codoped together in tellurite glasses. In contrast, the upconversion intensity of red and green emissions in Er^3+, Yb^3+, and Ho^3+ codoped glasses is enhanced largely when compared with Er^3+ /Yb^3+-codoped glasses. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms are evaluated. The three emissions are based on two-photon absorption processes.  相似文献   

3.
An Yba+/Al3+-codoped microstructured optical fibre is prepared based on photonic crystal fibre technology. The characteristic spectra of preforms and fibres are experimentally investigated. The results show that under a 971 nm excitation, besides the known infrared fluorescence luminescence around 1050 nm, a blue luminescence peak at 486 nm is obtained. Moreover, an unexpected emission peak at 730 nm is also observed. The photoluminescence mechanism of an Yba+/Al3+-codoped microstructured optical fibre is discussed. The emission peak at 486 nm is attributed to the cooperative upconversion resulting from pairs of Yb3+ ions, and the emission peak around 730 nm is ascribed to the stimulated Raman scattering because of nonlinear effects of microstructured optical fibre. The Yba+/Al3+-codoped microstructured optical fibre is promising for varieties of applications from laser printing and optical recording to cancer treatments, such as photodynamic therapy.  相似文献   

4.
We investigate the luminescence properties of Bi^3+ and RE^3+ (RE = Tb or Eu) in a Y3Ga5O12 (YGG) host system. The additional doping of Bi^3+ can enhance the luminescence of Th^3+ or Eu^3+ in this host. Energy transfer from Bi^3+ to Tb^3+ and Eu^3+ is observed and the mechanism of energy transfer is investigated. Mechanism of energy transfer can be explained as electric multipole interaction since the Bi^3+ emission band and Tb^3+ or Eu^3+ excitation band overlaps and the Bi^3+ emission intensity decreases while the intensity of Tb^3+ or Eu^3+ increases with the increase of Tb^3+ or Eu^3+ concentration. Therefore, Bi^3+ ion is a kind of efficient sensitizer to the Tb^3+ and Eu^3+ activators in the Y3Ga5O12 host.  相似文献   

5.
Monovalent ions Li+, Na+, and K+, as charge compensators, are introduced into CaYA1307: M (M = Eu3+, Ce~+) in this letter. Their crystal phases and photoluminescence properties of different alkali metal ions doped in CaYA1307 are investigated. In addition, the influence of charge compensation ion Li+ which has a more obvious role in improving luminescence intensity on CaYA1307: Eu3+ phosphor is intentionally discussed in detail and a possible mechanism of charge compensation is given. The enhancement of red emission centered at 618 nm belonging to Eu3+ is achieved by adding alkali metal ion Li+ under 393-nm excitation.  相似文献   

6.
The spontaneous magnetization of the Ho^3+ ion in holmium iron garnet (HoIG) single crystals in the temperature range of 4.2-294K along the directions [111], [110], and [100] are calculated, taking into account the effects of six magnetically inequivalent sites occupied by the Ho^3+ ions based on the quantum theory. The calculated results show that the magnetization of the Ho^3+ ion in HoIG is obviously anisotropic. The theoretical results ave in agreement with those of experiments. A primary interpretation of the anisotropy of magnetization of the Ho^3+ ion in HoIG is put forward.  相似文献   

7.
Silica-based Yb 3+-doped glass is prepared by non-chemical vapor deposition.The drawn photonic crystal fiber(PCF) has a strong absorption at 976 nm and emission wavelength of approximately 1 037 nm.The intensity and spectral lineshape of the near infrared(NIR) luminescence of the Yb3+-doped PCF are recorded and discussed in terms of excitation power,excitation wavelength,fiber length,and Yb3+ ion concentration.The emission intensifies as the excitation power and Yb3+ ion concentration increase.The intensity of the shorter wavelength side of the luminescence spectrum decreases as the length of the PCF increases.  相似文献   

8.
The emission properties of 2-um region fluorescence of Tm^3+-Ho^3+ co-doped tellurite glasses are investigated. Introducing F- ions to the composition of tellurite glasses plays a positive effect on the 2-#m emission. A maximum intensity of 2-um emission is achieved when 1.5-mol% Tm2O3 and 1-mol% Ho203 concentration are doped in the glasses. The emission cross section and gain coefficient of the ^5I8-^5I7 transition of Ho^3+ are calculated. The emission cross section has a maximum of 1.29×10-20 cm^2 at 2048 nm wavelength. The results indicate that Tm&3+-Ho^3+ co-doped tellurite glasses are suitable for 2-um application.  相似文献   

9.
Bi^3+ doped YB03 phosphors are prepared by solid state reaction and their luminescent properties are investi- gated by using synchrotron radiation instrument, Concentration and temperature dependences of YBO3:Bi3+ luminescence under VUV/UV excitation is observed, The emission and excitation spectra are assigned, and the mechanism for these phenomena is explored, which result from the energy transfer between Bi^3+ ions occupying different sites in YB03 crystal lattice.  相似文献   

10.
The upconversion luminescence of Er^3+/Yb^3+ ions is researched in a novel transparent oxyfluoride borosil- icate glass and glass ceramics under 980-nm excitation. Fluoride nanocrystals Ba2YF7 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. Compared with the parent glasses, significant enhancement of upconversion luminescence is observed in the Er^3+/Yb^3+ codoped transparent glass-ceramics, which may be due to the variation of coordination environment around Er^3+ and Yb^3+ ions after crystallization. The possible upconversion mechanism is also discussed.  相似文献   

11.
A novel Tm^3+/Yb^3+ triply-doped glass ceramics containing BaF2 nano-crystals are successfully prepared. Fluoride nanocrystals BaF2 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. The intense blue (476 nm), green (543 nm), and red (656 nm) emissions of the glass ceramics are simultaneously observed at room temperature under 980-am excitation, and the emission luminescence intensity increases significantly compared with the precursor glass, which is attributed to the low phonon energy of fluoride nanocrystals when rare-earth ions are incorporated into the precipitated BaF2 nanocrystals. Under 980-nm excitation at 400 mW, the international commission on illumination (CIE) chromaticity coordinate (X = 0.278, Y = 0.358) of the tridoped oxyfluoride glass ceramics' upconversion emissions is close to the standard white-light illumination (X = 0.333, Y= 0.333). The results indicate that Tm^3+/Yb^3+ triply doped glass ceramics can act as suitable materials for potential three-dimensional displays applications.  相似文献   

12.
Strong upconversion luminescence of Er3 /Yb3 -doped lead halide tellurite glass under 976nm excitation is demonstrated. Three emission bands centred at 525 nm, 545 nm, and 655 nm resulting from the transitionsfrom the excited states 2H11/2, 4S3/2, and 4F9/2 to the ground state 4I15/2, respectively, are observed evenat 60mW pumping power. The power dependent intensity and the upconversion mechanisms responsible forthe luminescence are evaluated and discussed. The obtained results might provide useful information for thedevelopments of upconversion lasers.  相似文献   

13.
A blue emitting phosphor Sr3Bi(PO4)3:Eu2+ is synthesized luminescent property is investigated. Sr3Bi(PO4 )3 :Eu^2+ can by a high-temperature solid state method, and its create blue emission under the 332 radiation excitation, and the prominent luminescence in blue (423nm) due to the 4fSd^1→4f^7 transition of the Eu^2+ ion. The crystallographic sites of the Eu^2+ ion in Sr3Bi(PO4)3 are analyzed, and the 420 and 440 nm emission peaks of the Eu^2+ ion are assigned to the nine-coordination and eight-coordination, respectively. The emission intensity of Sr3Bi(PO4)3:Eu^2+ is influenced by the Eu^2+ doping content, and the concentration quenching effect is observed. The quenching mechanism is the dipole-dipole interaction, and the critical distance of energy transfer is calculated by the concentration quenching method to be approximately 1.72nm.  相似文献   

14.
张军杰  戴世勋 《中国物理》2004,13(7):1156-1162
New oxyfluoride glasses and glass ceramics co-doped with Nd^{3+}, Yb^{3+} and Ho^{3+} were prepared. The upconversion of infrared radiation into green fluorescence has been studied for Nd^{3+}, Yb^{3+} and Ho^{3+} in the transparent oxyfluoride glass ceramics. At room temperature very strong green upconversion luminescence due to the Ho^{3+}: ({}^5F_4, {}^5S_2)→{}^5I_8 transition under 800 nm excitation was observed in the glass ceramics. The intensity of the green upconversion luminescence in a 1mol% YbF_3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho^{3+} upconversion luminescence in the oxyfluoride glass ceramics is discussed. The upconversion mechanism is also investigated.  相似文献   

15.
The upconversion luminescence and dynamics in Er^3+ /Yb^3+ codoped nanocrystalline yttria (7-65 nm) are studied under 980-nm pulsed laser excitation, It is found that the red emission of ^4F9/2-^4I15/2 and the green emission of ^2H11/2/^4S3/2 in nanoparticles with lower concentration of Yb^3+ result from a two-photon excitation, In nanocrystals with higher Yb^3+ concentration, the red emissions from a two-photon excitation, while the green emissions from a three-photon excitation, The luminescence dynamics indicates that as the particle size decreases, both the rise and the decay time constants become shorter, As the size decreases to several nanometres, the rise process nearly disappears, suggesting that the upconversion luminescence originates mainly from self-excitation of Er^3+, instead of the energy transfer of Yb^3+→ Er^3+.  相似文献   

16.
杨海贵  戴振文  祖宁宁 《中国物理》2007,16(6):1650-1654
This paper reports that the ultraviolet and visible upconversion luminescence from the ^4S3/2, ^2G9/2 and ^2P3/2 levels have been observed in Er^3+:YAG following 647.2 nm excitation of the ^4F9/2 multiple. Upconversion luminescence intensity dependence on pump power was recorded. The measured decay profiles were theoretically fitted by kinetics theory and the basically good agreements were achieved. The results indicate that some energy transfer processes proposed to explain the observed upconversion phenomena are reasonable.  相似文献   

17.
The absorption and emission spectra of the YVO4 single crystal co-doped with 1 at.% Nd^3+ and 1 at.% Yb^3+ are investigated. The efficient Nd^3+ → Yb^3+ energy transfer and the back transfer (Yb^3+ → Nd^3+) are observed at room temperature. The fluorescence lifetime of the 4F3/2 level of Nd^3+ in Nd,Yb:YVO4 is measured under 808 nm laser light excitation. The efficiency of Nd^3+ → Yb^3+ energy transfer in YVO4 is determined to be about 34%.  相似文献   

18.
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.  相似文献   

19.
Luminescence spectra of SrAl12O19:Pr^3+,Mn^2+ under VUV-UV excitation are investigated. The characteristic emissions between 4f levels and the excitation of 5d for Pr^3+ are observed. The emission of Mn^3+ peaks at 517nm and the excitations clue to the ground to multiplets are observed at 276, 360, 386 and 426nm. However, the spectral overlap between the emission of Pr^3+ and excitation of Mn^2+ is absent, suggesting that the quantum splitting cannot be achieved via a Pr^3+ Mn^2+ ion pair in the host SrAl12O19.  相似文献   

20.
Ho^3+ : GdVO4 is a new laser material suitable for high-power laser systems. In this paper we measure the absorption spectra of Ho^3+ in the sample Ho^3+: GdVO4. The intensity parameters are calculated by using the Judd-Ofelt theory. Some predicted spectroscopic parameters, such as the spontaneous radiative transition rate, branching ratio and integrated emission cross section are dealt with. And we also compare the optical parameters with those of other materials. From these results, it is found that there are many transitions which have large oscillator strengths and large integrated emission cross sections. Especially the transitions such as ^5 F4 → ^5 I 8, ^5 S2→^5 I8, ^5 F5 → ^5 I8 and ^5 I7 →^ 5 I8 are useful in solid-state lasers and other fields. Finally, we discuss the splitting of the energy levels of Ho^3+ in the crystal GdVO4 based on the group theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号