首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
BOG是液化天然气(LNG)在运输过程中蒸发出的气体,采用HYSYS对LNG船氮气制冷BOG再液化工艺进行了模拟。以BOG再液化率及制冷系数为流程性能评价指标,分析了制冷剂流量、BOG压缩机出口压力PS1、BOG换热后N2温度TS12对其影响,得到优化的操作条件为:制冷剂流量为4.3kg.s-1,PS1为0.45MPa,TS12为-136℃,此时,BOG再液化率为82.44%,BOG再液化循环制冷系数εBOG为3.13,N2循环制冷系数εN2为1.36。在以上参数确定的情况下,借助拉格朗日-拟牛顿法,以功耗为目标函数,对N2制冷循环三级压缩机组进行优化,得到最小功耗为821.47kW。  相似文献   

2.
低温液体蒸发气再液化系统漏热引起的储罐内低温液体蒸发气(BOG)蒸发速率和压力有效控制是试验正常进行的关键,通过对储罐内低温液体的热响应分析,建立罐内低温液体和BOG计算模型,对制冷机关闭情况下储罐内压力(BOG压力)和BOG蒸发速率随储存时间的变化过程进行数值计算。结果表明:随着储存时间的增大,储罐内压力升高、压力增长速率加快、BOG蒸发速率减小;液氮和BOG温度升高对储罐内压力升高速率具有显著的影响;制冷机可以实现对罐内压力和BOG量的调节控制。为制冷机控制方案的制定和后续开展低温液体BOG再液化试验研究提供理论基础。  相似文献   

3.
LNG储罐是各类LNG工厂和LNG站必不可少的重要设备,由于LNG温度远低于环境温度,尽管对储罐采取绝热措施,但蒸发仍是不可避免的,LNG蒸发使储罐内压力和温度升高,对储罐产生不利影响。为了减少LNG储罐内低温蒸发气(BOG)直接放空或燃烧造成的污染与浪费,在以往BOG再液化工艺基础上进行优化,设计出适用于LNG站储罐内BOG再液化工艺。该工艺利用LNG站对外供气过程中输出的LNG自身冷能,在压缩机、冷凝器等设备的作用下将LNG储罐内BOG再液化,并以60方LNG储罐为例,用Aspen Plus软件对工艺参数进行优化。研究结果表明:该工艺利用对外供气过程中输出的LNG自身冷能不仅可提高BOG的回收率,使BOG在LNG储罐中循环利用,同时可有效减少LNG冷能浪费;60方LNG储罐,输出LNG流量达到110kg/h即可满足BOG冷凝要求;具有设备少、投资小、能耗低、操作简单的优点,为各类LNG站储罐内BOG再液化处理均有应用价值。  相似文献   

4.
由于国际上严格限定船舶硫排放新规即将实施,液化天然气(LNG)动力船舶的发展迎来重大机遇。但甲烷本身是一种温室气体,LNG动力船储罐以及系统其他部件产生的闪蒸气(BOG)不应直接向大气中排放。针对上述情况,结合供气系统实例,提出一种处理LNG动力船BOG的方案——利用LNG自身外输冷能结合氮膨胀循环进行BOG再液化,并采用ASPENHYSYS对整个BOG处理流程进行模拟。结果表明,该再液化流程对储罐内压力与LNG组分有很大的响应,储罐压力越大,甲烷含量越少,比功耗相对也越大;同时BOG液化率也随着储罐压力的升高而不断减小,并且甲烷含量越低,液化率下降越快。经过对比,对进入换热器前的BOG进行预冷能有效降低能耗,并且本再液化流程从功耗方面明显优于其他船用氮膨胀再液化循环。  相似文献   

5.
首先简要介绍了目前LNG储运装置BOG产生的现状,以及目前回收BOG再液化的一些方法。接着分别针对低温制冷机和液氮作为冷源的两种回收再液化方法从设备投资(两者相当)、运营成本(前者比后者低约40%)、投资回收周期(两者相当)等方面进行综合分析比较,最终得出用低温制冷机作为冷源再液化BOG成为LNG是经济的(液化1kg的BOG仅需花费1.35元)。  相似文献   

6.
首先简要介绍了目前LNG储运装置BOG产生的现状,以及目前回收BOG再液化的一些方法。接着分别针对低温制冷机和液氮作为冷源的两种回收再液化方法从设备投资(两者相当)、运营成本(前者比后者低约40%)、投资回收周期(两者相当)等方面进行综合分析比较,最终得出用低温制冷机作为冷源再液化BOG成为LNG是经济的(液化1kg的BOG仅需花费1.35元)。  相似文献   

7.
LNG调峰装置是以调节城市供气负荷为主要目的的天然气液化及储存装置。工作流程是将城市用气低峰负荷时管网过剩天然气液化并储存,在用气高峰负荷或紧急情况时将储存的LNG气化后送至供气管网,实现调峰作用。文中结合工程实际介绍了某LNG调峰装置的基本结构和工艺流程,分析了五种工况下BOG的产生原因,并对BOG的产生量进行了理论计算。结合计算结果和工程实际提出了经济可行的BOG处理工艺,对后续该装置BOG处理系统的升级改造及同类型装置BOG处理系统的设计具有重要的参考价值。  相似文献   

8.
液化天然气(Liquefied natural gas,LNG) 因单位热值二氧化碳排放量低、 能量密度高、 清洁等优点, 成为世界能源市场上增速最快的化石燃料. 利用液化系统对 LNG 储运过程产生的闪蒸气(Boiled off gas,BOG) 进行液化回收, 不仅有显著的经济效益, 同时可以满足环保要求. 基于 LNG 运输过程中 BOG 再液化需求, 本文设计了带冷量回收的新型混合工质再液化系统, 同时建立了4 种常规 BOG 液化系统模型, 利用化工流程模拟软件分析了典型工况下各系统的工作原理及内部能量传递关系, 并对比了不同工况下各系统性能. 结果表明, 在所设进出口条件下: 当 BOG 组分为纯甲烷时, 混合工质液化系统比功耗及所需冷却水量明显低于氮膨胀液化系统, 新型混合工质液化系统比功耗最低为0.53 kWh· kg-1 ;BOG 流量每增加100 kg· h-1 , 氮膨胀液化系统功耗增加约100.05 kW,而带冷量回收的液化系统功耗仅增加63.60 kW. 当 BOG 组分中氮气含量增加时, 液化率降低, 所需的制冷量、 冷却水量均降低; 当氮气含量约为5 % 时存在最小比功耗, 此时氮膨胀系统比功耗最小为0.96 kWh· kg-1 , 带冷量回收的混合工质液化系统比功耗最低为0.51 kWh· kg-1 . 带冷量回收的新型混合工质再液化系统结构紧凑、 能耗更低, 是应用于 LNG 船舶 BOG 再液化工艺的优选方案之一.  相似文献   

9.
新疆、陕西、山西等我国很多地区都拥有丰富的煤层气资源,高效的低温液化技术能够显著提高我国煤层气资源的利用率。基于克劳特循环建立了煤层气液化流程,分析了分流膨胀气比例、压缩机出口压力对系统性能参数的影响。结果表明:通过选取合适的分流气比例可使得液化系统性能最优;煤层气中氮含量不会改变上述规律,而氮含量的提升会降低系统性能。进而针对克劳特液化循环液化率低的缺点,提出了用膨胀机代替部分节流阀并且置于低温换热器前的新循环。研究发现在压缩机出口压力低于4 MPa时,低压态新循环的系统性能参数要优于克劳特循环。在系统压缩后压力为3.0 MPa时,低压态新循环的液化率比克劳特循环高25.3%,单位液化功耗降低3.8%;在压缩机出口压力高于4.0 MPa时,高压态新循环的系统性能参数要优于克劳特循环;在压力为5.0 MPa时,高压态新循环液化率高3.33%,单位液化功耗低3.66%。  相似文献   

10.
为研究低温液体吸热产生蒸发气(Boil-Off Gas,BOG)的动态过程,寻求合理调控低温液体压力和温度的方法,搭建了一套低温液体BOG再液化试验系统。以液氮为工质对120L高真空变密度多层绝热储罐进行了压力、温度及蒸发率测试试验,分析了以上参数与时间的变化规律,计算了储罐静态蒸发率与漏热量。结果表明:储罐压力随时间增加而逐渐上升,在480min之前压力上升速率较快,为10.9Pa/s,之后上升速率逐渐减小。从液相到气相的温度依次升高,液相内部的温度相差较小,约为1.2℃;随时间的增加,液相和气液分界面的温度逐渐升高,气相的温度逐渐降低,480min后达到相对稳定的状态。初始充装率为0.7时,自然蒸发的BOG流量随时间增加逐渐减小;经计算,储罐静态蒸发率为2.04%/d,漏热量为4.1W。试验结果为后续开展低温液体BOG再液化研究提供了相关依据。  相似文献   

11.
针对城市天然气高中压管网调压站的压力能回收利用,综合考虑LNG储运过程中广泛面临的BOG(Boiloff gas)问题,提出了一种结合混合工质循环、利用天然气压力能生产高品质LNG的小型液化流程。研究分析了预冷温度、动部件效率、低温换热器性能及液化天然气温度对流程天然气液化比的影响,优化的流程结果参数表明,当所得液化天然气储存在4bar,-160℃时,流入系统18.26%的天然气可被液化,其余部分外输中压管网;提出了在LNG买卖市场中根据LNG品质议价的建议,以从根本上减少LNG储运、装卸及使用过程的BOG排放量,进而减少经济损失与能源浪费。该流程可应用于城市燃气调峰,也可进行二次销售,具有较好实用性和经济性。  相似文献   

12.
总压进口畸变与失速裕度相互关联非定常特征的数值模拟   总被引:1,自引:0,他引:1  
本文采用数值模拟方法对方波形式的总压进口畸变的强度系数 DC(60)和轴流压气机的特性曲线进行二维数值模拟。对不同流量下不同强度的总压畸变的强度系数进行了比较,并通过改变出口背压得到不同畸变强度下压气机的特性曲线和失速点。  相似文献   

13.
叶片尾缘掠型对离心压气机特性影响研究   总被引:1,自引:0,他引:1  
针对叶片尾缘掠型对离心压气机特性影响开展了数值仿真与试验验证的研究工作,详细分析了尾缘掠型对压气机特性的影响规律和压气机叶轮内部流动特征,研究结果表明:尾缘掠型能够提升压气机出口的总压,使离心压气机压比变高,自由掠叶型相比于斜掠叶型,压比会进一步提升。叶片尾缘掠型能够有效抑制尾缘流动分离与叶间泄漏效应的结合效果,降低流动分离强度和分离区域,提升叶轮的稳定工作范围与效率。试验验证结果表明采用自由掠型尾缘叶轮,压比随着转速的升高提升幅度变大,最多提升了9.14%,喘振线明显向左偏移,运行流量范围拓宽。尾缘掠型能够有效提升压气机压比和稳定工作范围,是改善压气机特性的有效手段。  相似文献   

14.
为探究热泵供水温度对CO2空气源热泵系统性能的影响,保持室外环境温度15.5℃不变,调节热泵供水温度,测试冷却水流量、气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力、压缩机耗功量、系统制热量、气冷器热交换完善度、系统COP的变化情况。结果表明:供水温度由45℃升至85℃,气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力随之增加,冷却水流量随之减小。系统制热量增加了7.3%、气冷器热交换完善度下降了20.0%、系统COP下降了35%、压缩机功耗增加了65.1%。  相似文献   

15.
本文通过求解三维不可压N-S方程,对三级低速轴流压气机第一级的孤立转子进行数值模拟,在出口加上节流阀进行了非定常计算,得到了失速先兆的特性,并且与压气机失速实验进行了比较。结果表明,计算与实验的特性线符合较好,单转子三维计算与压气机三级实验中第一级转子在失速先兆和失速团的特性一致。并且数值失速过程中动叶通道内部动态压力的变化与实验结果也很接近。  相似文献   

16.
为了研究多排跨声轴流压气机旋转失速先兆的表现形式与失速演化规律,基于自主研发的CFD软件ASPAC,通过发展动态重叠网格技术,流量出口边界条件以及节流阀边界条件,对单级跨声速压气机NASA Stage 35由近失速状态到完全失速状态的过程进行了模拟.结果表明,发展的数值模拟方法能准确地模拟多排压气机的旋转失速发展过程;均匀进气条件下,随着NASA Stage 35向失速状态逼近,某些动叶压力面前缘出现了叶顶间隙流溢流现象,促使压气机进入旋转失速状态;在失速先兆阶段,周向非均匀流动开始出现并沿压气机周向传播;当完全失速时,失速团充分发展并连续地沿周向旋转,结构几乎不随时间变化.   相似文献   

17.
实际工作中的压气机转子叶尖间隙往往存在着非轴对称性,对压气机性能及稳定性产生影响.本文以上海交通大学LSRC压气机实验台的第一级转子为研究对象,开展了转子非轴对称间隙布局的数值模拟研究.在数值模拟中,通过在转子出口设置喷管的方式模拟节流过程,分析了喷管结构对压气机性能的影响,并对该方法与常规背压节流方法进行了对比验证....  相似文献   

18.
赵军  付尧明  唐庆如  陈淑仙 《应用声学》2017,25(7):110-114, 119
航空发动机的控制规律作用巨大,它决定了发动机能否获得设定的稳态工作下性能指标,同时保证工作过程中的压气机和涡轮的气动稳定性。双转子涡喷发动机气动性能优化控制的目的就是有效地挖掘发动机的使用潜力。研究方法采用部件特性法对发动机进行稳态建模,并针对某双转子涡喷发动机的稳态模型进行三种不同稳态控制规律下的仿真,得到发动机性能参数的不同变化趋势,并对其进行了详细的分析。结果表明:保持低压转子转速不变的情况下,随着压气机进口总温的增加,高压转子转速上升,涡轮前温度升高,发动机推力增加;保持涡轮前温度不变的情况下,随着压气机进口总温的升高,低压压气机气动负荷变重,低压转子转速降低;高压转子转速也下降,但是下降幅度很小;燃油流量增加;保持高压转子转速不变的情况下,随着压气机进口总温的升高,燃油流量有一定的增加,低压转子转速有所降低;推力受多重因素的影响,推力值变化趋势较为复杂。  相似文献   

19.
低速轴流压气机旋转失速的二维数值模拟   总被引:5,自引:1,他引:4  
本文通过求解二维不可压N-S方程,对某三级低速轴流压气机的第一级进行数值模拟。首先用定常计算得到了该级的稳态性能曲线,然后在级出口加上节流阀进行非定常计算,模拟压气机进入失速的整个过程,重点是先兆的发展和内部流场的分析。计算结果表明,当阀门关到某个位置,无外加扰动,像数值误差这样的小扰动就能使压气机失速。本文还讨论了不同轴向计算域、关阀门速率等对模拟结果的影响。  相似文献   

20.
冷压缩机具有工作温度低、尺寸小、功耗低、便于操控等特点,是大型过冷氦低温系统中的关键设备。对低温过冷测试平台的冷压缩机进行测试,方法为采用两台串联的冷压缩机在低温低压下直接抽吸饱和液氦容器,液氦容器内装有电加热器用以模拟超导磁体的热负荷,并调节氦气蒸发速率。测试表明,冷压缩机的稳定工作参数接近设计值,运行过程中冷压缩机始终保持安全运行,未出现喘振情况,液氦容器温度和压力分别达到3 K、22 kPa,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号