首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
磁控溅射铂抑制镀银表面的二次电子发射   总被引:1,自引:0,他引:1       下载免费PDF全文
何鋆  俞斌  王琪  白春江  杨晶  胡天存  谢贵柏  崔万照 《物理学报》2018,67(8):87901-087901
降低表面的二次电子产额是抑制微波部件二次电子倍增效应和提升功率阈值的有效途径之一,目前主要采用在表面构造陷阱结构和沉积非金属薄膜的方法降低二次电子产额,其缺点是会改变部件的电性能.针对此问题,采用在表面沉积高功函数且化学惰性的金属薄膜来降低二次电子产额.首先,采用磁控溅射方法在铝合金镀银样片表面沉积100 nm铂,测量结果显示沉积铂后样片的二次电子产额最大值由2.40降至1.77,降幅达26%.其次,用相关唯象模型对二次电子发射特性测量数据进行了拟合,获得了在40-1500 eV能量范围内能够准确描述样片二次电子产额特性的Vaughan模型参数,以及在0-50 eV能量范围内能够很好地拟合二次电子能谱曲线的Chung-Everhart模型参数.最后,将获得的实验数据和相关拟合参数用于Ku频段阻抗变换器的二次电子倍增效应功率阈值仿真研究,结果表明通过沉积铂可将部件的功率阈值由7500 W提升至36000 W,证实了所提方法的有效性.研究结果为金属材料二次电子发射特性的研究提供实验数据参考,对抑制大功率微波部件二次电子倍增效应具有参考价值.  相似文献   

2.
铁氧体环行器是承载航天器微波系统大功率的关键器件,其大功率微放电效应是影响航天器在轨安全、可靠运行的瓶颈问题。从影响微放电效应的关键因素——二次电子发射特性出发,提出铁磁性微波部件微放电效应物理演变模型,揭示了铁磁性微波部件内部初始自由电子与二次电子运动的空间规律;通过改变铁磁性微波部件表面二次电子发射特性,揭示了铁磁性微波部件抗微放电优化设计的物理原理。在S频段铁氧体环行器中验证了基于表面二次电子发射特性的微放电效应抑制,将器件的微放电阈值从380 W提高至3400 W以上,提升效率大于900%。  相似文献   

3.
介质部分填充平行平板传输线微放电过程分析   总被引:2,自引:0,他引:2       下载免费PDF全文
翟永贵  王瑞  王洪广  林舒  陈坤  李永东 《物理学报》2018,67(15):157901-157901
本文主要研究了介质填充微波部件微放电随时间演变的过程,重点分析了介质微波部件微放电自熄灭机理.以介质部分填充平行平板传输线为研究对象,忽略空间电荷效应,采用自主研发粒子模拟软件模拟微放电过程,并将模拟结果与金属微波部件结果进行对比.结果表明,在一定功率下,金属微放电过程中电子数目呈指数形式增长,而介质微放电过程经历初始电子倍增后发生自熄灭现象,同时发现在电子数目即将下降为0时,介质表面的平均二次电子发射系数大于1或约等于1.另外,在上述模拟结果的基础上对微放电过程中介质表面积累电荷问题进一步分析,模拟结果表明,如果持续向微波部件内注入电子,介质表面的平均二次电子发射系数最终都约等于1.所得结论对研究复杂介质填充微波部件微放电的机理具有一定的理论指导价值.  相似文献   

4.
翁明  谢少毅  殷明  曹猛 《物理学报》2020,(8):210-216
以介质填充的平行板放电结构为例,本文主要研究了介质填充后微波低气压放电和微放电的物理过程.为了探究介质材料特性对微波低气压放电和微放电阈值的影响,本文采用自主研发的二次电子发射特性测量装置,测量了7种常见介质材料的二次电子发射系数和二次电子能谱.依据二次电子发射过程中介质表面正带电的稳定条件,计算了介质材料稳态表面电位与二次电子发射系数以及能谱参数的关系.在放电结构中引入与表面电位相应的等效直流电场后,依据电子扩散模型和微放电中电子谐振条件,分别探讨了介质表面稳态表面电位的大小对微波低气压放电和微放电阈值的影响.结果表明,介质材料的二次电子发射系数以及能谱参数越大,介质材料的稳态表面电位也越大,对应的微波低气压放电和微放电阈值也越大.所得结论对于填充介质的选择有一定的理论指导价值.  相似文献   

5.
基于微陷阱结构的金属二次电子发射系数抑制研究   总被引:4,自引:0,他引:4       下载免费PDF全文
叶鸣  贺永宁  王瑞  胡天存  张娜  杨晶  崔万照  张忠兵 《物理学报》2014,63(14):147901-147901
近年来,金属二次电子发射系数的抑制研究在加速器、大功率微波器件等领域得到了广泛关注.为评估表面形貌对抑制效果的影响,利用唯象概率模型计算方法对三角形沟槽、矩形沟槽、方孔及圆孔4种不同形状微陷阱结构的二次电子发射系数进行了研究,分析了微陷阱结构的形状、尺寸对二次电子发射系数抑制特性的影响规律.理论研究结果表明:陷阱结构的深宽比、孔隙率越大,则其二次电子发射系数抑制特性越明显;方孔形和圆孔形微陷阱结构的二次电子发射系数抑制效果优于三角形沟槽和矩形沟槽;具有大孔隙率的微陷阱结构表面的二次电子发射系数对入射角度的依赖显著弱于平滑表面.制备了具有不同表面形貌的金属样片并进行二次电子发射系数测试,所得实验规律与理论模拟规律符合较好.  相似文献   

6.
胡晶  曹猛  李永东  林舒  夏宁 《物理学报》2018,67(17):177901-177901
抑制二次电子倍增效应是提高空间大功率微波器件和粒子加速器等设备性能的重要课题,而使用表面处理降低材料的二次电子发射系数是抑制二次电子倍增的有效手段.为优化寻找抑制效果最好的表面形貌,本文采用蒙特卡罗方法模拟了各种微米量级不同表面形貌的二次电子发射特性,研究占空比、深宽比、结构形状及排列方式等的影响.模拟结果表明,正方形、圆形、三角形凸起和凹陷结构的二次电子发射系数随占空比和深宽比的增大而减小,但存在饱和值;凸起结构的排列方式对二次电子发射系数的影响不大,但是凸起结构形状却对二次电子发射系数的影响较大,其中三角形的抑制效果最佳.对凹陷结构而言,不同形状的抑制效果差别不大;同时,占空比和深宽比相同时,凸起结构较凹陷结构抑制效果更佳.究其原因,核心在于垂直侧壁的“遮挡效应”,凹陷结构遮挡效应的大小与“陷阱”垂直高度有关,而凸起结构遮挡效应的大小和凸起部分的斜方向投影大小有关.  相似文献   

7.
长周期多载波微放电是近年来新发现的、主要发生在宽带、大功率真空微波部件中的二次电子倍增放电现象. 与发生在单个载波周期中的多载波微放电相比, 长周期多载波微放电来源于多个载波周期间的二次电子累积, 具有相对较低的放电阈值和不可预测性, 对空间和加速器应用中宽带大功率微波部件的长期可靠性带来了新的隐患. 为解决长周期多载波微放电阈值分析中非均匀场激励下二次电子累积的理论计算问题, 本文采用概率方法, 通过引入随机漫步和Branching Levy漫步模型, 对微放电过程中二次电子横向扩散所需遵循的概率模型进行了严格的推导, 并采用所得的概率密度函数, 给出了主模为TE10模的矩形波导中多载波激励下二次电子积累过程的纯理论计算. 与相同条件下采用粒子仿真所得的结果对比, 本文给出的计算结果与仿真结果相符合, 同时计算耗时减少了接近一个数量级. 本文报道的二次电子横向扩散的概率描述可广泛应用于高功率真空电子和电磁器件领域. 关键词: 多载波微放电 二次电子 随机漫步 概率密度  相似文献   

8.
王新波  申发中  于明  崔万照 《强激光与粒子束》2023,35(3):033003-1-033003-9
微放电是制约航天器微波部件功率容量的主要瓶颈之一。以介质微波部件中典型的介质加载平行板波导为例,基于三维粒子模拟分别对仅考虑外加微波场(情况1)、考虑外加微波场和空间电荷(情况2)以及考虑外加微波场、空间电荷和介质表面电荷(情况3)三种情况下微放电演化过程中电子数目、瞬态二次电子发射系数、归一化反射波电压以及介质表面与上金属板之间的间隙电压随时间的变化进行了仿真,并给出了情况3电子分布和介质表面电荷密度随时间的变化过程。在此基础上,明确了空间电荷和介质表面电荷在微放电过程中所起的不同作用:即空间电荷会使微放电达到饱和状态,介质表面电荷则导致微放电饱和状态无法持续,最后自行熄灭。介质表面电荷导致了微放电过程中介质和金属瞬态二次电子发射系数下降速率不一致,归一化反射波电压幅度随时间变化的包络类似于“眼睛”形状、间隙电压类直流偏置、非对称电子能量分布等特殊现象。  相似文献   

9.
 针对介质单边二次电子倍增现象,理论分析给出了其动力学方程、二次电子初始能量与角度分布,结合二次电子发射的材料特性,研究了二次电子倍增的理论预估敏感区间。利用蒙特卡罗方法抽样选取电子初始发射能量和角度,数值研究了二次电子倍增的敏感区间,并与理论结果进行了比对,给出了二次电子数目随时间的增长关系;采用固定时间步长并考虑电子束动态加载饱和效应的细致蒙特卡罗方法,研究了二次电子数目、直流场、射频场、介质表面沉积功率、电子放电功率、二次电子碰撞能量及电子渡越时间等二次电子倍增特性物理量的变化过程,并且讨论了初始电流及二次电子倍增工作点对二次电子倍增整个过程的影响作用,得出了二次电子倍增存在初始阈值发射电流密度的结论。  相似文献   

10.
基于临界电子密度的多载波微放电全局阈值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
多载波微放电即发生在宽带、大功率真空无源微波部件中的二次电子倍增放电现象, 是影响空间和加速器应用中无源微波部件长期可靠性的主要隐患. 多载波微放电全局阈值功率的预测对于工作在真空环境中的微波部件至关重要, 但迄今尚无有效方法进行上述阈值的准确分析. 本文将微放电发生过程中二次电子分布区域等效为等离子体, 通过在理论上建立微波部件的电磁特性和电子密度间的对应关系, 提出了一种基于测试系统可检测水平的多载波微放电全局阈值功率分析方法. 为了能够通过蒙特卡罗优化方法得到全局阈值, 进一步基于电子加速的类半正弦等效, 提出了微放电演化过程中电子数涨落的快速计算方法. 基于以上两种方法得到的针对实际微波部件的全局阈值分析结果与实验结果相符合. 不同于传统基于多载波信号功率分析的经验方法, 本文基于临界电子密度判断依据和电子数涨落快速计算, 为多载波微放电全局阈值的准确预测提供了一种高效的分析方法.  相似文献   

11.
12.
林舒  闫杨娇  李永东  刘纯亮 《物理学报》2014,63(14):147902-147902
为了精准快速地计算微波器件中微放电效应的阈值,在传统蒙特卡罗方法的基础上,提出了三种不同的蒙特卡罗方法,分别对二次电子的初始能量、出射角度和初始相位等参数进行随机,结合四阶龙格-库塔法和Furman模型计算电子的运动轨迹和单次碰撞产生的二次电子发射系数,然后应用不同的方法计算有效二次电子发射系数作为微放电效应的判据.以平板传输线TEM模式为研究对象,采用四种不同的蒙特卡罗方法计算微放电阈值,并与统计模型结果进行对比.结果表明单电子-多碰撞蒙特卡罗方法误差最小,而且稳定性最好.  相似文献   

13.
李永东  闫杨娇  林舒  王洪广  刘纯亮 《物理学报》2014,63(4):47902-047902
为了计算微波器件的微放电阈值,提出了一种快速单粒子蒙特卡罗方法.该方法对二次电子出射能量、出射角度和相位等参数进行随机处理,结合四阶龙格库塔法和Furman模型模拟了电子运动和二次电子发射系数,并以多次连续碰撞的二次电子发射系数的算数平均值作为微放电效应发生的判据.以平板传输线横电磁模式为研究对象,分别采用快速单粒子蒙特卡罗方法、统计模型、传统蒙特卡罗方法以及粒子模拟方法计算其微放电阈值和敏感区域.计算结果表明,该方法不仅具有与统计模型和粒子模拟方法相当的计算精度,而且比统计模型方法的适应性更强,比传统蒙特卡罗方法的稳定性更好,比粒子模拟方法的计算效率高几十倍以上.  相似文献   

14.
多载波微放电阈值的准确分析对于空间大功率微波系统的长期可靠性至关重要.近年来,一种源于多载波包络周期间少量剩余电子累积的"长周期"微放电机制引发广泛关注.国内外研究者普遍认为,相对源于单个周期内电子累积的"周期内"微放电,"长周期"微放电应该被优先激发、具有更低的阈值.但依据长周期微放电判据分析所得的阈值显著高于实验结果.针对这一问题,本文采用与实验系统可比拟的微放电判据,在相同多载波信号激励、相同微波部件条件下,对微放电的演化过程进行了粒子模拟,分析了多载波微放电、特别是周期内微放电的行为特性和发生条件,有效地解释了实验结果.本文的粒子模拟结果表明,给定微波部件被优先激发的多载波微放电类型取决于载波频率的配置,长周期微放电并非一定被优先激发,这是导致基于长周期微放电判据分析所得阈值显著高于实验结果这一问题的原因所在.以上结论对于空间大功率微波部件的多载波微放电全局阈值评估和抑制设计具有指导意义.  相似文献   

15.
张雪  王勇  徐强 《物理学报》2015,64(20):207902-207902
次级电子倍增效应引起的输出窗失效问题往往给微波器件造成灾难性的影响, 是限制微波器件功率进一步提升的瓶颈. 以S波段高功率盒形窗为研究对象, 针对盒形窗内无氧铜金属边界与陶瓷介质窗片相对的区域, 建立了研究法向电场作用下次级电子倍增效应的Monte-Carlo模型. 通过拟合这两种材料间双面次级电子倍增以及单面次级电子倍增效应的敏感曲线, 对次级电子倍增发展特点进行详细分析, 获得了金属与介质之间的次级电子由双面倍增向单面倍增演变的规律.  相似文献   

16.
一种二次电子发射的复合唯象模型   总被引:2,自引:0,他引:2       下载免费PDF全文
李永东  杨文晋  张娜  崔万照  刘纯亮 《物理学报》2013,62(7):77901-077901
二次电子发射模型的精度对二次电子倍增击穿阈值的模拟计算影响很大, 针对现有两种经典二次电子发射唯象模型的不足, 以修正Vaughan模型作为Furman模型中的真二次电子发射系数计算模型, 建立起一种二次电子发射的复合唯象模型. 该模型不仅适用于倍增击穿过程的数值模拟, 还很大程度上提高了与实验数据拟合的准确性. 通过对银和铝合金两种材料二次电子发射系数实验结果和模型拟合结果的对比发现, 在不同入射角情况下, 复合唯象模型的平均误差较原有两种模型降低了10%以上. 关键词: 二次电子发射 唯象模型 击穿阈值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号