首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 218 毫秒

1.  短时微重力条件下燃料电池性能实验研究  
   郭航  赵建福  律翠萍  万士昕  吴峰  叶芳  马重芳《工程热物理学报》,2008年第29卷第5期
   开展了不同重力情况下燃料电池性能的实验研究.利用微重力落塔,对常重力和微重力条件下燃料电池发电时其内部的两相流动开展了可视化现场观测.对重力因素对燃料电池内部传质过程的影响进行了分析和讨论.实验结果表明:当电流密度较大时,在微重力环境中燃料电池性能较常重力环境中的有较明显下降.由于微重力条件下浮升力的消失导致气体不能及时从流道中排出,进而对直接甲醇燃料电池内的传质过程产生负面影响.    

2.  直接甲醇燃料电池两相非等温模型  
   苗政  何雅玲  李相霖  邹金强《工程热物理学报》,2009年第30卷第12期
   本文建立了直接甲醇燃料电池的两相、非等温模型.采用多孔介质中的经典多相流动模型来计算电池内与电化学反应相耦合的传质、传热问题;模型中考虑了水的汽化凝结过程和甲醇窜流对电池性能的影响.计算结果表明电池内温度分布不均匀,温度最高点出现在阴极催化层;阳极甲醇浓度分布不均匀是造成阳极催化层内局部反应速率不均匀分布的主要原因,而阴极催化层局部反应速率主要依赖于阴极过电势的分布;大的流场板开口比条件下电池整体均匀性较好,性能得到提高.    

3.  甲醇浓度对被动式自呼吸直接甲醇燃料电池性能的影响  
   张晶  冯立纲  蔡卫卫  刘长鹏  邢巍《中国科学:化学》,2011年第12期
   依据单电池测试结果和甲醇传质理论考察了甲醇溶液的浓度对被动式自呼吸直接甲醇燃料电池(DMFC)性能的影响.研究结果表明,电池的法拉第效率和能量转化效率会随着浓度的增大而降低,采用4mol/L的甲醇溶液实现了最大的放电功率13.9mW/cm^2,并能在60mA下稳定放电长达20h.这取决于电池运行过程中电极内部的甲醇传质和甲醇透过的共同作用.    

4.  具有可渗透阳极的自呼吸微流体燃料电池性能特性  
   叶丁丁  张彪  杨扬  周劲  李俊  朱恂  廖强《工程热物理学报》,2012年第3期
   微流体燃料电池去除了质子交换膜,避免了膜退化、水管理等问题,是微型燃料电池领域新的研究热点。本文构建了具有可渗透阳极和空气自呼吸阴极的微流体燃料电池,采用甲酸溶液作为燃料对其性能特性进行了实验研究。结果表明:具有可渗透阳极的自呼吸微流体燃料电池性能随燃料浓度或流量的增加先升高后下降,随电解液浓度的增加而升高;阳极侧反应产生的CO2气泡对自呼吸微流体燃料电池的性能和燃料利用率的影响较大,适当提高燃料流量有利于气泡的排除。    

5.  直接甲醇燃料电池膜及阴极模拟  
   叶芳  徐榕  郭航  马重芳  汪茂海《工程热物理学报》,2006年第27卷第6期
   本文提出一个针对直接甲醇燃料电池膜及阴极的二维、多组分稳态数学模型.模型根据直接甲醇膜燃料电池膜及阴极运行工况特性,考虑质量、动量、组分守恒以及电池中的电化学过程而建立,并应用了计算流体动力学(CFD)技术.模拟结果表明传质对直接甲醇燃料电池的性能影响很大;本文还进行了直接甲醇燃料电池阴极水管理的初步探讨.    

6.  三维顺排阳极自呼吸微流体燃料电池性能特性  
   张彪叶丁丁朱恂李俊廖强《工程热物理学报》,2014年第6期
   自呼吸微流体燃料电池是很有前景的新型微型电源,目前其性能的主要限制因素是阳极燃料传质。本文构建了具有三维顺排阳极的自呼吸微流体燃料电池,利用圆柱形阳极在流道中容积式的分布增大反应面积,强化燃料传输。本文研究了燃料浓度和反应物流量对电池性能的影响,并对流道中的两相流动进行了可视化观察。实验结果表明:随燃料浓度或反应物流量的增加,电池性能先升高后降低;产生的CO_2气泡能够被限制在阳极电极和隔离棒中,减小了其对阴极侧电解液流动的扰动;气泡会在隔离棒之间聚并形成气膜,气膜周期性形成和排出的动态行为对电池的放电性能具有较大影响。    

7.  膜接触器复合有机胺溶液捕集CO2(英文)  
   陆建刚  陈敏东  嵇艳  张慧《燃料化学学报》,2009年第37卷第6期
   本文提出一种基于氨基酸盐的CO_2复合吸收剂,采用膜接触器-复合溶液耦合技术研究了吸收CO_2的性能,并与单一氨基酸盐溶液吸收性能进行了比较,讨论了气液流速等因素对气液出口CO_2浓度、捕集效率和总传质系数的影响,开发了一个阻力层模型预测膜接触器的总传质系数.结果表明:复合溶液的性能明显好于单一氨基酸盐溶液;与单一溶液比较,使用复合溶液,气相出口CO_2浓度较低,液相出口CO_2浓度较高,捕集效率也较高;复合溶液的总传质系数明显高于单一溶液.可以证实,在膜吸收过程中氨基酸盐基复合溶液是一高效的CO_2吸收剂.模型的预测值符合实验值.    

8.  操作条件对DMFC阴极电化学阻抗谱参数的影响  被引次数:1
   金宝舵  郭建伟  谢晓峰  王树博  王金海《高等学校化学学报》,2008年第29卷第11期
   通过降低阴极催化剂载量强化了阴极氧还原反应的电化学极化, 测量了不同操作条件下直接甲醇燃料电池(DMFC)的极化曲线和交流阻抗谱,并提出了改进的等效电路模型LR(CR)(QR(LR))用以分析温度、空气流量和甲醇流量对DMFC阴极电化学反应和传质极化过程的影响. 研究结果表明, 提高工作温度会导致更多的甲醇渗透到阴极, 加大阴极氧气还原反应的电荷转移电阻; 只有采用大的空气流量,才会有效地防止水淹, 加大氧气向催化剂层的传质, 促进阴极反应的进行; 适当提高甲醇的流量可以促进阳极和阴极电化学反应的进行, 但是过高的甲醇流速可能会降低电极表面的温度, 加剧甲醇的渗透.    

9.  PEMFCs的膜及阴极催化层数值模拟  
   叶芳  陈峰  郭航  马重芳  王朝阳《工程热物理学报》,2004年第25卷第5期
   本文提出了一个质子交换膜燃料电池的膜和阴极催化层的一维非稳态数学模型,模型考虑了电化学反应及反应中的传质过程。本文结合算例分析了燃料电池膜及阴极催化层的性能,结果能验证燃料电池内阻理论。论文结果表明:(1)随着输出电流密度的增大,氧浓度分布不均匀性增大; (2)阴极催化层厚度减小,可提高电池输出电压; (3)电池进口处氧气摩尔浓度增大,可增加电池的输出电压。    

10.  直接甲醇燃料电池三通道蛇形阳极流场两相流研究  
   叶芳  孔佳  郭航  马重芳《工程热物理学报》,2009年第30卷第9期
   本文针对配备三通道蛇形阳极流场的液态进料直接甲醇燃料电池阳极两相流及电池性能开展了实验研究.液态进料的直接甲醇燃料电池阳极流床内会形成二氧化碳气泡与甲醇溶液构成的两相流系统,其两相流特性受到电池流道设计、运行工况和工作角度的影响,并同时影响燃料电池的性能.本文设计了三通道蛇形流场,通过可视化实验得到直接甲醇燃料电池三通道蛇形阳极流场内的两相流特性随电流密度变化的规律,并研究了燃料电池在不同旋转角度下的两相流特性和电池性能.实验结果表明:在不同的旋转角度下,电池都体现出较好的工作性能.    

11.  被动式DMFC水滴积聚及对放电性能影响  
   叶丁丁  朱恂  李俊  廖强  丁玉栋《工程热物理学报》,2010年第31卷第1期
   本文结合恒电流放电时阴极水滴积聚过程,对影响被动式直接甲醇燃料电池恒流放电性能的甲醇浓度、电流密度及环境湿度等因素进行了实验研究及讨论。结果表明:甲醇浓度高于4 M时,阴极水淹所造成的氧气传输限制为电池放电时间的控制因素;低电流密度放电时,恒电流放电时间主要受阴极侧水淹的影响;高电流密度时,主要受甲醇消耗的影响;湿度越大越易引起阴极水淹。    

12.  不同进气湿度PEMFC动态响应分析  
   张竹茜  贾力  谭泽涛《工程热物理学报》,2010年第3期
   质子交换膜燃料电池(PEMFC)工作参数的影响最终要体现在对电池内传质过程的影响上。实验得到了在不同进气加湿程度下电池性能在启动工况中的变化,基于非稳态数学模型计算了不同阴极入口湿度下电池在负载渐变工况下膜内含水量和电流密度的瞬态响应,并与相应的实验工况进行了对比。    

13.  燃料电池有轨电车声学优化  
   刘楠  金静飞《应用声学》,2018年第3期
   基于线路噪声实验,系统测试分析了燃料电池有轨电车的噪声特性,研究了噪声分布以及空气传声、结构传声路径对噪声的贡献。结果表明改善车辆地板、空调、顶板和风挡的隔声性能,尤其是在500~1250 Hz的1/3倍频带范围内的隔声性能将有助于改善车辆内部声学环境。优化燃料电池系统控制,降低冷却单元转速将有助于改善车辆外部声学环境。在此基础上提出减震降噪建议措施,再次进行线路噪声实验,结果表明该措施有效。    

14.  填料型绝热吸收器影响因素实验研究  被引次数:1
   王林  陈光明  王勤《工程热物理学报》,2007年第28卷第2期
   为了研究绝热吸收器内溴化锂溶液降膜吸收水蒸汽传质强化过程,本文首先建立了溴化锂溶液降膜绝热吸收循环实验台,然后分析了喷淋溶液温度、喷淋溶液流量、喷淋溶液浓度和吸收压力等参数变化对吸收过程传质系数的影响,并得出有指导意义结论.    

15.  阳极传质对三合一微生物燃料电池性能的影响  
   朱恂  张亮  李俊  叶丁丁  廖强《工程热物理学报》,2014年第11期
   物质传输是影响MFC性能的一个重要因素。本文构建三合一膜电极式微生物燃料电池(MFC),研究了阳极传质形式对MFC启动特性、阳极生物膜电化学活性和性能的影响。结果表明,与阳极采用大腔室结构的MFC-1相比,阳极采用蛇形流道的MFC-2由于在启动过程中阳极电解液传质较佳,不但启动较快而且输出电压更高。启动完成后,MFC-2阳极生物膜电化学活性较高,采取不同扫描速度的循环伏安扫描测试证明了这主要是由于蛇形流道较佳的传质所致。启动过程和产电过程中较佳的传质导致MFC-2最大功率密度(2676.2 mW·m~(-2))比MFC-1最大功率密度(2149.0 mW·m~(-2))约高24.5%。    

16.  苯-N-甲酰吗啉体系膜基吸收传质过程全微分模型研究  
   徐军  李睿  王连军  李建生  孙秀云《高等学校化学学报》,2010年第31卷第1期
   根据双膜理论建立了全微分传质动力学模型, 以苯-N-甲酰吗啉(NFM)水溶液体系为代表, 研究了聚丙烯PP疏水性微孔膜接触器的传质过程, 并通过理论模拟及实验考察了气液相流速、气液相进口浓度、液相N-甲酰吗啉浓度、气液流动方式及膜接触器形态对苯传质通量及去除效率的影响. 结果表明, 模拟值与实验值吻合良好, 误差控制在20%以内. 当气相流量或气相进口浓度较低时, 气相传质为控制步骤, 而随着气相流量和气相进口浓度升高, 液相流量对传质过程的影响显著增加. 传质通量随气液相流量和气相进口浓度的增大而增大. 液相进口浓度及膜丝内径的增大显著降低传质通量. 另外, 较薄的膜丝壁厚有利于传质的进行, 气液逆向流方式较同向流方式可获得更高的传质通量.    

17.  直接甲醇燃料电池反应和组分传递的模型计算  
   苗政  何雅玲  李相霖  李小跃《工程热物理学报》,2008年第29卷第11期
   本文建立了直接甲醇燃料电池的二维、单相数学模型来研究电池内各种场的分布情况.模型中考虑了与电化学反应相伴随的、与流体动力学相关的反应与物料传递的耦合过程以及甲醇串流对阴极反应的影响;对阳极和阴极催化层传质过程引入了团聚块模型进行修正.计算了电池内的反应组分浓度分布和局部电流分布以及催化层沿长度方向的局部过电势分布,分析丁催化层内反应的非均匀性.在此基础上考察了对电池流场板结构的改进方案:减小集流板肋条宽度以及在肋条过窄时引入金属泡沫代替电池流场板和扩散层对电池性能的影响,通过对比计算表明两种改进均可以使得催化层反应均匀化,使电池输出性能得到提高,后者效果更佳.    

18.  中空纤维膜萃取分离混合稀土中的钍  被引次数:2
   王玉洁  张淑敏  李德谦《中国稀土学报》,1998年第16卷第3期
   通过中空纤维膜逆流萃取,研究了伯胺N1923对Th4+和RE3+的萃取分离过程。测定了水相料液硫酸浓度、水相与油相流量对传质系数的影响,并对包头矿硫酸分解浸出液进行中空纤维膜萃取实验。结果表明,Th4+的传质系数受水相流量影响,与酸度及油相流量无关,总传质速率受水相临界层传质步骤控制。RE3+的传质系数不受水相流量影响,油相流量影响很小,但受硫酸浓度的影响,总传质速率受萃取反应速率控制。根据传质速率的不同,对包头矿硫酸浸出液进行萃取分离,在8h内Th4+可基本萃取完全,而RE3+及Fe3+基本不被萃取,故可在密封条件下分离钍。    

19.  Nafion含量对直接甲醇燃料电池阴极催化剂性能表达的影响  
   龙志  邓光荣  刘长鹏  葛君杰  邢巍  马树华《催化学报》,2016年第7期
   燃料电池是一种将燃料反应的化学能转化为电能的装置,可分为氢氧质子交换膜燃料电池(PEMFCs)、直接甲醇燃料电池(DMFCs)和直接甲酸燃料电池等.与 PEMFCs相比, DMFCs以甲醇为燃料,燃料的储存运输和电池操作运行具有较高的安全性,所以近年来受到人们的广泛关注.
  膜电极组件(MEA)是 DMFCs的核心部分,由气体扩散层(GDL)、催化层(CL)和质子交换膜(PEM)三部分组成. GDL用于提高电池传质能力,并同时作为 MEA的集流体. PEM主要用于隔离燃料和氧气,进行质子传导. CL是 MEA中的主要组成部分,为电化学反应提供场所.
  催化层由催化剂,质子传输介质和电子传输介质组成.通常,阳极催化剂采用 PtRu/C,阴极采用 Pt/C,质子传输介质为全氟磺酸树脂,如 Nafion. CL的结构对电池性能有直接的影响,因此人们对 CL的结构进行了详细的研究,并通过调节 CL亲水性能、梯度催化层的结构设计等优化其结构.研究表明,当 CL中 Nafion含量为33 wt.%, PEMFCs具有最佳的电池性能. DMFCs与 PEMFCs对 MEA要求不同,其阴极更容易发生水淹现象.本文结合非接触式三维光学轮廓仪、接触角测试系统和电化学测试对阴极不同 Nafion含量的膜电极进行了表面形貌、亲水性、循环伏安和 DMFC性能测试.
  本文利用喷涂法制备了 GDE,然后与 Nafion115热压形成 MEA.由三维表面形貌图可以看出,随着催化层中 Nafion含量的增加, GDE表面的粗糙度变大,尤其是 N35和 N45.理论上,表面粗糙有利于 Pt的暴露和传质扩散,但是其电池性能并未与粗糙度呈现出正相关的关系,因为 Nafion含量高于35 wt.%, Pt被 Nafion过度包裹,抑制了 O2至催化剂表面的传输,且随着 Nafion含量由15 wt.%增加至45 wt.%,其 GDE表面的接触角由166.8o减至143.1o,说明 CL的亲水性增强,易导致阴极产生的水无法及时排出,从而造成阴极水淹现象.
  从不同 Nafion含量制备 MEA的 CV图可以看出,随着 Nafion含量的增加, Pt的电化学活性面积(ESA)增加.当 Nafion含量较少时, Nafion无法对全部 Pt纳米粒子(NPs)形成包覆或无法形成连贯的质子传输通道,从而导致大部分的 Pt NPs催化活性较低变为无效 Pt.而有效 Pt NPs要求与连贯的质子传输通道相连接.当 Nafion含量高于35 wt.%时,其 ESA基本保持不变,因为 Pt载量一定,从而限制了 ESA,此时达到该载量条件下的极限 ESA.但是电池极化曲线表明,30 wt.% Nafion含量的 MEA具有最佳的电池性能.因为有效 Pt NPs不一定是高效的,当他们全部被 Nafion包裹后, O2只能依靠溶解在 Nafion中才可以到达催化剂表面,从而阻碍传质.只有 Pt NPs表面包裹和暴露面积达到一定比例时才变得高效.所以当 Nafion含量低于30 wt.%时,主要由质子传输通道导致的有效 Pt NPs较少;当 Nafion含量高于30 wt.%时,出现 Nafion过度包裹 Pt NPs,阻碍 O2传质.因此, Nafion含量30 wt.%时, Pt的包裹面积和裸露面积达到所研究的最佳状态.
   

20.  质子交换膜燃料电池动态特性仿真  
   何海婷  贾力  张竹茜《工程热物理学报》,2009年第30卷第7期
   建立了质子交换膜燃料电池数学模型,并进行了仿真实现,计算分析了质子交换膜燃料电池典型动态特性和温度对其工作状况的影响.结果表明PEMFC内气体传质速度是影响电压响应时间的决定因素,扩散层内液态水的积累需要较长的时间,数量级在102~103,温度升高会降低PEMFC的动态响应时间并提高电池的输出功率,温度超过80°C后会降低电池的输出性能.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号