首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本文报道了一种能驱动风扇工作的自呼吸式DMFC小型电堆,电堆主要南燃料储罐、膜电极(MEA)、集流体等组成.文中针对影响该电池性能的主要参数,如电堆的活化过程、甲醇浓度等因素进行了研究.同时,本文还对电堆的恒电流放电时的电流曲线特点以及阴极水的生成规律进行了初步考察和探讨.  相似文献   

2.
本文借助可视化手段,针对平行流场和蛇形流场,实验研究不同放电电流密度、甲醇浓度、进料温度和入口流量对液相进料直接甲醇燃料电池阳极流场流动阻力特性的影响.结果表明:放电电流密度增加,流场压降随之增加,小电流放电,蛇型流场较平行流场压降增加慢,当超过某一值时,蛇型流场的压降增加较平行流场快;随甲醇浓度的提高,进出口压降均略有减小,且两种流场压降变化趋势一致;随进料温度升高,平行流场压降逐渐增大,蛇彤流场压降变化较小;随着甲醇溶液流量增大,平行流场和蛇行流场压降均逐渐增人,平行流场增加缓慢,蛇形流场压降增加速度远大于平行流场.  相似文献   

3.
大气压介质阻挡放电常用于产生低温等离子体,其放电特性已成为当前的研究热点.本文针对大气压氦气介质阻挡放电结构建立了流体数值仿真模型,研究其辉光放电脉冲特性.从发光结构、粒子分布和电场分布等方面说明了该类型放电辉光结构的时空演化过程;分别从电子增长率和电场强度分布两个角度比较和分析了该类型放电中阴极位降区范围的定义,并探讨了发光最强点位置与阴极位降区边界的关系,认为利用电场强度分布来定义该类型放电的阴极位降区范围更加合理,且在电流下降沿内,光强最强点始终处于阴极位降区内部.研究了外施电压、阻挡介质二次电子发射系数γ和N_2含量对间隙电压、电流密度和阴极位降区特性等的影响规律.发现:在二次电子发射系数γ不变时,阴极位降区宽度与电流密度具有负线性相关关系;利用阴极位降区的伏安特性证明了该类型放电属于亚辉光放电靠近正常辉光放电的部分;主要考虑N_2与He的Penning效应时,电流密度和带电粒子密度在一定N_2含量下具有最大值等.  相似文献   

4.
自行研制了可在任意角度下工作的小型被动式直接甲醇燃料电池。对被动式燃料电池在不同电流负载变化情况下的输出电压动态响应开展了实验研究工作。实验结果表明,在加载电流的时候,阳极甲醇溶液浓度为9 mol/L时燃料电池的输出电压明显高于溶液浓度为5 mol/L时的,而且变化比较平稳。在卸载电流以及低电流密度时,阳极燃料浓度为5mol/L的电压高于浓度为9 mol/L时的。放电电流密度越高,低浓度时的放电电压越不稳定。从被动式燃料电池内部传质过程与电化学反应耦合的角度对实验结果开展了分析。  相似文献   

5.
为了实现在大气压下低触发电压的多通道放电,以阵列微孔阴极结构作为触发装置设计了一种新型纳秒脉冲开关。以激光打孔的双面环氧板为阵列微孔阴极,研究了开关工作系数、微孔阴极放电电流、微孔阴极孔数及微孔阴极孔径对开关触发电压、延迟和抖动时间的影响。实验结果表明:更多的阵列微孔、100 m的微孔孔径能够降低开关的触发电压,同时高开关工作系数、大触发电流、多阵列微孔能够减少开关的延迟和抖动时间。因此,为了获得更高性能的纳秒脉冲开关,除了对开关结构的进一步改善,这几个影响开关性能的因素是设计开关时应主要考虑的。  相似文献   

6.
水的传递和分布对PEM燃料电池的性能具有重要影响,本文建立了一套分区域求解、两相流、非等温数学模型对此进行了研究,首次清晰地展示出二维空间的水传递和分布特性,得到如下有价值的详细信息:沿流动方向阳极侧的总水分浓度不断降低,而阴极侧的却不断升高,阴极流道末端易发生水淹;阴极GDL中的液态水分布随电流大小而不同:小电流时从内到外逐渐减少,而大电流时则逐渐增多。  相似文献   

7.
本文根据直接甲醇燃料电池(DMFCs)阴极运行工况特性,考虑一个简单的一维模型,分析水蒸气饱和凝结成水的条件,从而得到电池阴极从单相流动到两相流动的临界电流值。分析结果表明:阴极气体进口速度增大使临界电流密度增大;临界电流随阴极气体进口相对湿度的增加而线性下降;临界电流随流道变长而减小;电池运行温度高有利于提高电池的临界电流。  相似文献   

8.
光电阴极的发射电流密度和寿命限制了其在功率器件和大科学装置中的应用.本文结合光电阴极和场发射阴极电子发射理论,设计了大电流密度的真空沟道结构光电阴极组件,并使用覆膜和刻蚀技术制备了以GaAs衬底为阴极材料的光电阴极组件.光电阴极组件电子发射特性测试结果显示,常温状态下随入射光功率增加,阴极发射电流增加幅度逐步增大.光功率为5 W时,发射电流达到26.12 mA,电流密度达到5.33 A/cm~2.随光电阴极组件工作温度增加,阴极材料内的载流子浓度也会相应地增加,提高了负极对阴极材料内发射电子的补充效率,增强了阴极组件的电子发射能力.当光电阴极组件为400℃时,其发射电流可达到89.69 mA.由于阴极表面不存在激活原子,在光电阴极组件连续144 h的寿命试验中,阴极的发射电流为4.5±0.3 mA,阴极发射性能并未出现明显衰减.真空沟道是光电阴极组件电子发射的主要区域,通过改善真空沟道结构参数可以直接调整阴极组件发射电子束的形状,增强大电流密度光电阴极在真空电子器件和设备中的适用性.  相似文献   

9.
沈向前  谢泉  肖清泉  陈茜  丰云 《物理学报》2012,61(16):165101-165101
采用二维、自洽的PIC/MCC (particle-in-cell with Monte Carlo collision) 方法,模拟了磁控溅射辉光放电过程, 重点讨论了工作参数对放电模式和放电电流的影响. 模拟结果表明, 当工作气压由小到大或空间磁场从强到弱变化时, 放电模式会从阴极空间电荷主导的放电模式过渡到阳极空间电荷主导 的放电模式.在过渡状态,对应的工作气压与磁通密度分别为0.67 Pa和0.05 T; 随着工作气压的增大,放电电流先增大后趋向平衡,当工作气压超过2.5 Pa时,电流开始随工作气压的增大而减小; 而阴极电压增大时,放电电流近似线性增加.  相似文献   

10.
为了揭示微空心阴极放电的放电机理,利用流体模型研究了矩形微空心阴极放电的时间和空间分布特性。在氩气环境下计算得到了压强为1.3×10~4Pa时电流、电势、电场、电子和离子密度等随时间的发展变化。结果表明,整个放电过程分为四个阶段,即预放电阶段、电场由轴向向径向转换阶段、电流缓慢增长向空心阴极效应过渡阶段和稳态放电阶段。稳态放电时出现明显的空心阴极效应,阴极位降区存在很高的径向电场和较高的电子平均能量,而负辉区径向电场很弱,电子平均能量较低,电子和离子密度峰值出现在负辉区,二者数值基本相等,而在阴极位降区离子密度远高于电子密度。  相似文献   

11.
The parameters of a self-maintained low-pressure discharge in crossed E×H fields are compared for the Penning discharge with a self-heated disk cathode and the combined discharge with an axial self-heated rod electrode. Based on the continuity equation for the electron flux and the energy balance on the hot cathode, the parameters of the discharge in crossed E×H fields with the self-heated cathode are calculated for a wide range of variations of geometrical sizes of the discharge cell and work functions of cathode material. It is demonstrated that the examined systems differ significantly by radial distributions of fast electron concentration (uniform for the Penning cell and highly nonuniform for the combined discharge cell) and currents and that the volt-ampere characteristics of the examined cells are described by decreasing voltage-current dependences.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 73–80, January, 2005.  相似文献   

12.
Significant progress has been made in the last few years toward synthesizing highly dispersible inorganic catalysts for application in the electrodes of direct methanol fuel cells. In addition, research toward achieving an efficient catalyst supporting matrix has also attracted much attention in recent years. Carbon black- (Vulcan XC-72) supported Platinum and Platinum-Ruthenium catalysts have for long served as the conventional choice as the cathode and the anode catalyst materials, respectively. Oxygen reduction reaction at the cathode and methanol oxidation reaction at the anode occur simultaneously during the operation of a direct methanol fuel cell. However, inefficiencies in these reactions result in a generation of mixed potential. This, in turn, gives rise to reduced cell voltage, increased oxygen stoichiometric ratio, and generation of additional water that is responsible for water flooding in the cathode chamber. In addition, the lack of long-term stability of Pt-Ru anode catalyst, coupled with the tendency of Ru to cross through the polymer electrolyte membrane and eventually get deposited on the cathode, is also a serious drawback. Another source of potential concern is the fact that the natural resource of Pt and the rare earth metal Ru is very limited, and has been predicted to become exhausted very soon. To overcome these problems, new catalyst systems with high methanol tolerance and higher catalytic activity than Pt need to be developed. In addition, the catalyst-supporting matrix is also witnessing a change from traditionally used carbon powder to transition metal carbides and other high-performance materials. This article surveys the recent literature based on the advancements made in the field of highly dispersible inorganic catalysts for application in direct methanol fuel cells, as well as the progress made in the area of catalyst-supporting matrices.  相似文献   

13.
Proton exchange membrane fuel cells [PEMFC] have become highly attractive for stationary as well as mobile energy applications due to their good efficiency compact cell design and zero emissions. PEM fuel cells mainly consist of anode and cathode containing platinum/platinum alloy electrocatalysts and Nafion membrane as the electrolyte. They operate on hydrogen fuel, which is generally produced by reforming of hydrocarbons, alcohols such as methanol and may contain large amounts of impurities such as methanol, carbon dioxide, trace amounts of carbon monoxide, etc. The studies on the effect of methanol impurity in hydrogen on fuel cell performance and methods of mitigation of poisoning are very important for the commercialization of fuel cells and are described in a limited number of papers only. In this paper, we present the studies on the influence of methanol impurity in hydrogen for the PEM fuel cells. The effect of various parameters such as methanol concentration, cell voltage, current density, exposure time, reversibility, operating temperature, etc. on the cell performances was investigated using pure hydrogen. Various methods of methanol poisoning mitigation were also investigated.  相似文献   

14.
Results are presented from experimental studies of the current-voltage characteristics of a reflex discharge with a self-heating electrode used in a source of atomic hydrogen. The processes occurring in a discharge cell and governing the main features of the characteristics obtained are investigated theoretically. An explanation of the general features of the discharge is proposed. It is shown that an abrupt decrease in the discharge voltage with increasing hydrogen flow rate is associated with penetration of the plasma into the hollow cathode and the ignition of a hollow cathode discharge. It is demonstrated that, as the discharge current increases, the glow discharge gradually transforms into an arc discharge with a heated cathode.  相似文献   

15.
Sasan Yousefi  Mehdi Zohoor 《Ionics》2013,19(8):1195-1201
The variations of the open circuit voltages (OCVs) were studied in a passive air-breathing direct methanol fuel cell with an air-breathing cathode using Nafion 115 as the electrolyte membrane. The effects of some operating parameters such as cell temperature, cell orientation, and also methanol concentration on the OCV of fabricated fuel cell were investigated experimentally. The experimental results showed that the OCV values depend strongly on the cell orientation, cell temperature, and methanol concentration. The OCV values decrease with an increase in methanol concentration and cell temperature. Also, the OCV values in vertical orientation are lower than the OCV values in other orientations.  相似文献   

16.
质子交换膜燃料电流道淹没与传质强化   总被引:1,自引:0,他引:1  
在地面常重力环境下,采用透明电池可视化方法研究了质子交换膜燃料电池阳极和阴极的流道淹没现象。分别研究了阳极和阴极反应物流量对电池内部传质和电池性能的影响。结果表明,电池阴极的淹没区域比阳极大,由电极淹没引起的气体传质受限和电化学反应受限主要发生在阴极。提高反应物流量能够强化气体传质并提高电池性能,并且提高电池阴极侧反应物流量比提高阳极侧反应物流量对提高电池性能更有效。本文工作为进一步开展微重力环境中的燃料电池实验提供了比较依据。  相似文献   

17.
Abstract

The electrolyte cathode atmospheric glow discharge (ELCAD) invented in 1992 is a new optical emission source with upcoming application in the field of environmental protection as an outstanding instrument for monitoring the toxic heavy metal content of waters and wastewaters. The main operating parameters, mechanisms (secondary electron emission from the electrolyte cathode, self‐sustaining processes in the cathode dark space, dependence of the emitted line intensities on the discharge parameters, temperatures), and the analytical performance of this special discharge are presented through a critical review using the papers related to the ELCAD published from 1993 to 2006.  相似文献   

18.
A physical model of a self-sustaining reflective discharge is formulated based on the continuity equation for the electron flux and the equation of energy balance on the hot cathode. The model allows one to calculate the current-voltage characteristic of a high current reflective discharge with a hot cathode in a wide range of magnetic fields, discharge cell dimensions, and cathode material work functions. An advantage of the model is that it is capable of describing the ordinary operating mode of a reflective discharge with cold cathodes as a limiting case. The model predicts the existence of two discharge operating modes with thermionic electron emission on the cathode: a low-voltage mode with a high current density and a high-voltage mode with a significantly lower current density. It is shown that the low-voltage operating mode can occur in a wide range of the discharge currents, while the discharge voltage can be substantially reduced by using a cathode material with a low work function.  相似文献   

19.
Overcharge performance of LiFePO4 cells is investigated through adding 2, 5-ditertbutyl 1, 4-dimethoxybenzene (DDB) as redox shuttle into electrolyte (RS electrolyte) at different charge rate. RS electrolytes with DDB works well as overcharge protection at low charge rate of less than 0.1 C. Novel charge/discharge characteristics are observed when charge rate increases in the cell with RS electrolyte. Especially, larger discharge capacities are obtained at the same discharge rate after charge rate gets higher than 0.1 C rate. Discharge capacity is larger in the cell with RS electrolyte than that in the cell without RS electrolyte at the same charge and discharge rate. At the same charge rate, cells with RS electrolyte have better cycling performances and larger discharge capacity than that with conventional electrolyte. These indicate that DDB accumulates in cathode with cycling and influences electrode–electrolyte interface reactions.  相似文献   

20.
Hongpeng He  W. Weppner 《Ionics》2001,7(4-6):469-474
An all-solid-state Li-ion secondary battery based on Li/LiSiPO/LiCoO2 has been developed and the cell performance has been evaluated. The electrolyte and cathode were fabricated by tape casting. The charge and discharge behaviour of the cell at constant current was investigated in view of the fact of lower conductivities of solid conductors compared to liquid electrolytes and the internal resistance of the solid-solid interface. Solutions to these problems have been investigated by varying the fabrication methods. A major advantage was the application of pyrolyzable pore formers in the cathode green tape in order to produce a porous cathode matrix. This result indicates that the interfacial contacts between solid electrolytes and electrodes can be greatly improved. Also, the internal resistance may be further decreased by tape casting of thinner electrolyte films. In conclusion, the tape casting method is very promising for the development of high performance all-solid-state Li-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号