首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A continuous wave (CW) high-power Raman fiber laser (RFL) with maximum output power of 2.24 W and slope efficiency of 32.8% at 1484 nm is obtained using a CW 8.4 W/ 1064 nm Yb-doped double-clad fiber laser as a pump, 700 m phosphosilicate fiber, and cascaded cavities with two pairs of fiber Bragg grating mirrors for the first and the second Stokes orders. Theoretical simulation of the RFL using a very efficient and rapidly converging collocation method is done to understand and optimize the fiber length to obtain maximum second Stokes power. RFL performance for the 300, 700 and 1150 m phosphosilicate fiber lengths was experimentally investigated by observing maximum output power, slope efficiency, threshold power, and full-width at half maximum at the second Stokes wavelength.  相似文献   

2.
A high-power singlemode Raman fiber laser (RFL) with maximum output power of 4.11 W and maximum power conversion efficiency of 47.40% at 1239 nm is realized using continuous wave 8.4 W Yb-doped double-clad fiber laser as a pump, 700 m phosphosilicate fiber, and a Raman cavity formed by a pair of fiber Bragg grating mirrors at 1239 nm. The output characteristics of the RFL at 1239 nm for different fiber lengths and output mirror reflectance are reported. Theoretical simulation is done to numerically optimize for fiber length and output coupler reflectivity to obtain maximum first Stokes power.  相似文献   

3.
Using 1064 nm CW Nd:YVO4 solid-state laser as a pump, 1-km phosphosilicate fiber and cascaded cavities with two pairs of fiber Bragg grating mirrors for 1239 and 1484 nm, we obtained a CW 800 mW/1484 nm Raman fiber laser (RFL) for an actual incident pump power of about 2 W (Nd:YVO4 power of 6.90 W). The conversion efficiency is as high as 40%. To the best of our knowledge, this is the highest conversion efficiency of RFL pumped by solid-state laser. The output power instability at 1484 nm in half an hour is less than 3%. In addition, the numerical simulations are also performed. Good agreement between the results of numerical simulation and the results of the experiment has been demonstrated.  相似文献   

4.
A highly efficient cascaded P-doped Raman fiber laser (RFL) pumped by a 1064-nm continuous wave (CW) Nd:YVO4 solid-state laser is reported. 1.15-W CW output power at 1484 nm is obtained while the input pump power is 4 W, corresponding to the power conversion efficiency of 28.8%. The threshold pump power for the second-order Stokes radiation is 1.13 W. The slope efficiency is as high as 42.6%. The experimental results are in good agreement with theoretical ones. Furthermore, the power instability of the P-doped RFL at 1484 nm in an hour is observed to be less than 5%.  相似文献   

5.
罗小东  饶云江  冉曾令 《光学学报》2007,27(8):1393-1396
在基于掺铒光纤-拉曼混合放大的可调光纤环形激光器的光纤布拉格光栅(FBG)传感系统结构基础上,提出了延长传感距离的新方法。该方法以环形掺铒光纤激光器作为光源,采用双波长拉曼放大的方法对信号进行低噪声的双向放大,系统中间的两段掺铒光纤再利用剩余的抽运功率产生自发辐射光和放大传感信号,使得整个系统能够在超长的传感距离上获得很高的信噪比。实验表明使用一只40 mW的掺铒光纤放大(EDFA)抽运源、一只170 mW的拉曼抽运源和一只2 W的拉曼抽运源,可以使整个系统的传感距离达到100km,并且传感系统的光纤布拉格光栅反射信号均能获得超过57 dB的优良信噪比,从而实现在超长距离上的光纤布拉格光栅传感。  相似文献   

6.
采用国产大模场面积双包层光纤的714W连续光纤激光器   总被引:33,自引:2,他引:31  
采用两个中心波长约976 nm准直输出的高功率半导体激光模块为抽运源,通过空间滤波和非球面透镜耦合技术,双端抽运长度为21 m的大模场面积国产掺镱双包层光纤,获得了714.5 W的高功率连续激光输出。采用反向抽运,当入纤抽运功率为760 W时,激光输出功率达到501 W;采用双端抽运,当入纤抽运功率为1137 W时,获得了714.5 W的高功率连续输出,光光转换效率为62.8%,斜率效率为67%。  相似文献   

7.
Y. Zhang  Ch. Song  W. Wang 《Laser Physics》2009,19(8):1854-1857
The all-fiber Tm-doped double-clad laser was reported, incorporating a phase mask scanning technology writing FBG directly into the Tm-doped multi-mode fiber core as cavity mirror, using 800 nm femtosecond laser sources. A fiber grating of 12 mm length was realized with a period of 1.35 μm. Pumped by the 793 nm pigtail fiber output LD, the continuous wave (CW) power could scale to 25.4 W at 1.96 μm with the slope efficiency of 38% respected to the LD output power. The output laser spectrum exhibited multi-peak, due to the multi-mode FBG reflective characteristic.  相似文献   

8.
1410 nm波段分布式光纤拉曼增益放大器的研究   总被引:6,自引:2,他引:4  
讨论了分布式光纤拉曼增益放大器的工作原理,采用1320nm固体激光器作为抽运源,获得了1410nm波段附近的光放大,在单模GI光纤长度为23km时,初步研究了拉曼放大器增益与光纤作用长度的关系,抽运脉冲峰值功率分别为50W、30W时,光纤的有效作用长度分别为15.5km和10.5km;研究了在不同的光纤有效作用长度时,拉曼放大器增益与抽运功率的关系;从光纤拉曼光谱图估算了光纤拉曼放大器的光谱宽度为50nm或250cm^-1。  相似文献   

9.
由光纤回路镜组成的新型串级光纤拉曼激光器,用1064nm作为抽运源,光纤拉曼激光运转于第三级斯托克斯串级拉曼波段,输出波长为1240nm。在光纤回路镜的性能和光纤参数还不够完善的条件下,1240nm输出功率为300mW,光-光转换效率约为25%。  相似文献   

10.
Song  E. Z.  Li  W. H.  You  L. 《Laser Physics》2012,22(4):757-759
The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.  相似文献   

11.
Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 μm diameter.The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 μm aperture spaced on 500 μm centers.The coupling system contains packaged laser diode bar,fast axis collimator,slow axis collimation array,beam transformation system and focusing system.The high brightness,high power density and single fiber output of a laser diode bar is achieved.The coupling efficiency is 65% and the power density is up to 1.03×104 W/cm2.  相似文献   

12.
自调Q、自锁模铒/镱共掺光纤激光器   总被引:4,自引:1,他引:3  
研究了结构新颖的环形腔铒/镱(Er/Yb)共掺双包层光纤激光器.为了获得高功率激光输出,使用6个激光二极管(LD)同时抽运Er/Yb共掺光纤,采用光纤光栅(FBG)Sagnac环作为波长选择器,得到了中心波长为1548.11 nm、谱线宽度为0.06 nm的窄线宽激光输出;并利用增益光纤作为可饱和吸收体,实现了自调Q、自锁模脉冲输出.当抽运功率为719 mW时,激光器输出自调Q脉冲,脉冲周期为20μs,脉冲宽度为2.8μs,脉冲的平均功率为38.4mW,峰值功率为274.3mW;当抽运功率为3.6 W时,激光器输出自锁模脉冲,脉冲宽度为4ns,平均功率为319 mW,脉冲峰值功率大于10 W,重复频率为7.937 MHz.  相似文献   

13.
1 Introduction  Laserdiodearray (LDA )thathasmultipleemittingregionsisaperfectdevicetoachievehigherpoweroutputswithanincreasedbrightness.ThehighCW power ,highbrightnessandfiberoutputofalaserdiodebarcanbeappliedinmedicine ,materialsprocessing ,solid statelas…  相似文献   

14.
We demonstrate a 2080 nm long-wavelength mode-locked thulium(Tm)-doped fiber laser operating in the dissipative soliton resonance(DSR) regime. The compact all-fiber dumbbell-shaped laser is simply constructed by a 50/50 fiber loop mirror(FLM), a 10/90 FLM, and a piece of large-gain Tm-doped double-clad fiber pumped by a 793 nm laser diode. The 10/90 FLM is not only used as an output mirror, but also acts as a periodical saturable absorber for initiating DSR mode locking. The stable DSR pulses are generated at the center wavelength as long as 2080.4 nm, and the pulse duration can be tunable from 780 to 3240 ps as the pump power is increased. The maximum average output power is 1.27 W, corresponding to a pulse energy of 290 nJ and a nearly constant peak power of 93 W. This is, to the best of our knowledge, the longest wavelength for DSR operation in a mode-locked fiber laser.  相似文献   

15.
报道了一种基于色散调谐技术的宽带扫频掺铒光纤激光器。通过在主动锁模光纤激光器腔内引入较大色散,利用锯齿波电信号调制电光调制器的调制频率,可以实现激光器扫频输出。应用扫频激光器可将光纤光栅反射中心波长的变化转变为时域上信号间隔变化,适用于光纤光栅传感解调。搭建了扫频光纤激光器,利用掺铒光纤作为增益介质,研究了扫频范围的影响因素。通过优化实验参数,实验得到的扫频带宽达到43 nm,接近增益带宽,扫频速度为50 Hz。利用搭建的扫频激光器进行了光纤光栅传感解调,灵敏度约为0.68 ms/nm,验证了解调原理。  相似文献   

16.
大功率多波长可转换双包层光纤激光器   总被引:1,自引:1,他引:0  
在多模掺镱双包层光纤上,利用相位掩模法直接写制Bragg光栅作为激光器后腔镜,得到多波长激光输出.在室温下,通过调节偏振控制器可以得到稳定的单波长及多波长的激光输出,输出波长范围在1 056~1 061 nm,线宽均小于0.02 nm.在25 W的976 nm激光泵浦下,激光器得到功率为6 W的多波长输出.  相似文献   

17.
A random distributed feedback fiber laser operating at 1115 nm has been demonstrated experimentally in standard communication optical fibers by using a LD-pumped Yb-doped fiber laser as the pump source. We have studied the effect of different fiber spans on this new type of random fiber laser output power. It is shown that the generation power is the highest up to 198 mW in a 50 km fiber span. The slope efficiency is more than 28.7%. Stable, high-power continuous-wave (CW) lasing can be generated when the pump power is 3.6 W. The threshold power has also been calculated which well proves a random fiber laser operating via Rayleigh scattering, amplified through the Raman scattering.  相似文献   

18.
Y. Zhang  T. Jing 《Laser Physics》2009,19(12):2197-2199
The diode laser (LD) clad-pumped 1947.6 nm continuous wave (CW) Tm3+-doped fiber amplifier is reported using the master oscillation power amplifier (MOPA) method. The injected seed laser is provided by an all-fiber LD-clad-pumped Tm3+-doped single-mode fiber laser, which has a nearly 2.4 W maximal output power and 0.1 nm ultra-narrow linewidth based on the intracore reflection FBG. Using the 25/400 μm double-clad LMA Tm3+-doped fiber as the gain fiber, the output maximal output power is 30.6 W from the fiber amplifier, with a slope efficiency of 39.1% respected to the LD total output power. A high power multi-mode fiber combiner is used to couple high power LD light into the gain fiber. The output wavelength is also located at 1947.6 nm, with the slightly expanded laser linewidth of 0.2 nm.  相似文献   

19.
 利用飞秒激光微加工技术,可以在光纤纤芯内直写出布拉格光栅,它与传统的光纤光栅制作方法相比,具有耗时短、无需光敏光纤、周期可任意设定、光栅稳定性高等优点。采用800 nm钛宝石飞秒激光器,在Hi1060光纤内写入一支8 mm长的布拉格光栅,光纤光栅的周期为2.9 μm,这是中心波长为1 042 nm的八阶光纤布拉格光栅。将所得光栅与一段有源的双包层光纤熔接,作为激光输出镜,利用975 nm的LD光纤模块作为泵浦源,采用端泵浦技术构成双包层光纤激光器。双包层光纤采用Nufern公司镱(Yb3+)离子掺杂双包层光纤,光纤长度3 m。所得激光器的输出功率为71.1 W,中心波长1 042 nm,带宽约为0.8 nm。  相似文献   

20.
The output characteristics of a linear cavity Yb-doped double-clad fiber (DCF) laser, including the effects of fiber length, fiber loss, and output mirror reflectivity on laser output power and threshold pump power have been studied theoretically and experimentally. In this paper, the linear cavity of double-clad fiber laser (DCFL) was composed of a pair of fiber Bragg gratings, while the facet of fiber was anti-reflection (AR) coated at 1070nm to erase the Fresnel reflection. Analysis showed that the laser output increases as the reflectivity of the fiber Bragg grating used as the output mirror decreases. At last, under the pump power of 14.4 W, single-mode laser output at 1070 nm was up to 10.8 W, with slope efficiency of 75 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号