首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO3:Bi3+,Eu3+ and strong green emission for (Y,Gd)BO3:Bi3+,Tb3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu3+-doped or Tb3+-doped (Y,Gd)BO3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu3+-doped or Tb3+-doped (Y,Gd)BO3. The luminescence enhancement of Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors is due to energy transfer from Bi3+ ion to Eu3+ or Tb3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi3+ and Eu3+ or Tb3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp.  相似文献   

2.
Ryutaro Souda 《Surface science》2010,604(19-20):1694-1697
Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf2N?) is enriched at the surface relative to hexafluorophosphate (PF6?). The surface of an equimolar mixture of Li[Tf2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) has a nominal composition of [bmim][Tf2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.  相似文献   

3.
Xi Chen 《Journal of luminescence》2011,131(12):2697-2702
In this work, we report preparation, characterization and luminescent mechanism of a phosphor Sr1.5Ca0.5SiO4:Eu3+,Tb3+,Eu2+ (SCS:ETE) for white-light emitting diode (W-LED)-based near-UV chip. Co-doped rare earth cations Eu3+, Tb3+ and Eu2+ as aggregated luminescent centers within the orthosilicate host in a controlled manner resulted in the white-light phosphors with tunable emission properties. Under the excitation of near-UV light (394 nm), the emission spectra of these phosphors exhibited three emission bands: one broad band in the blue area, a second band with sharp lines peaked in green (about 548 nm) and the third band in the orange-red region (588-720 nm). These bands originated from Eu2+ 5d→4f, Tb3+5D47FJ and Eu3+5D07FJ transitions, respectively, with comparable intensities, which in return resulted in white light emission. With anincrease of Tb3+ content, both broad Eu2+ emission and sharp Eu3+ emission increase. The former may be understood by the reduction mechanism due to the charge transfer process from Eu3+ to Tb3+, whereas the latter is attributed to the energy transfer process from Eu2+ to Tb3+. Tunable white-light emission resulted from the system of SCS:ETE as a result of the competition between these two processes when the Tb3+ concentration varies. It was found that the nominal composition Sr1.5Ca0.5SiO4:1.0%Eu3+, 0.07%Tb3+ is the optimal composition for single-phased white-light phosphor. The CIE chromaticity calculation demonstrated its potential as white LED-based near-UV chip.  相似文献   

4.
Densities and speeds of sound have been measured for the binary mixtures of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] with ethylene glycol monoethyl ether (EGMEE), diethylene glycol monoethyl ether (Di-EGMEE), triethylene glycol monoethyl ether (Tri-EGMEE) over the whole composition range at atmospheric pressure. Experimental densities have been used to estimate excess molar volumes, VE. Changes in isentropic compressibility, Δκs have been estimated by using experimental speed of sound and density values. Excess properties were fitted to the Redlich-Kister polynomial equation to obtain the binary coefficients and the standard errors. The molecular scale interactions between ionic liquid and alkoxyalkanols have been investigated through 1H NMR spectroscopy. NMR chemical shifts for hydroxyl group of alkoxyalkanols and their deviations show hydrogen bonding interactions of varying strengths between ionic liquid and alkoxyalkanol in their binary mixtures.  相似文献   

5.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

6.
The luminescence properties of Ba3Tb0.9Eu0.1(PO4)3 and Ba3Gd0.9Eu0.1(PO4)3 phosphors were studied for excitation over the 120-300 nm wavelength range. It is found that Tb3+, which exhibits a strong vacuum-ultraviolet (VUV) absorption band, provides sensitisation of Eu3+ emission in this host. This effect can be used to develop phosphors with enhanced conversion efficiency of the VUV radiation into visible light.  相似文献   

7.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

8.
The fluorescence property of xTbF3-BaF2-AlF3-GeO2+ySmF3 (x=0.01-40 mol%, y=0-5 wt%) glasses were investigated. The enhancement of Sm3+ fluorescence was recognized in the presence of Tb3+. Increasing Tb3+ content, the emission color changed from green to orange. When the intensity of fluorescence at 540 nm originated from Tb3+ is compared with that at 600 nm originated from Sm3+, the information about the concentration quenching of Tb3+ and Sm3+ was obtained. From these results, rare earth ions were dispersed identically in the glasses. After heating to 673 K or cooling to 77 K, the emission color of 20TbF3-20BaF2-10AlF3-50GeO2/mol%+0.05 wt% SmF3 glass was reversibly changed from orange to green. In addition, while the emission from 10TbF3-20BaF2-10AlF3-60GeO2+0.01 wt% SmF3 glass was green, its crystallized sample, prepared by annealing at 1073 K, exhibited an orange emission due to Sm3+ at room temperature.  相似文献   

9.
By using metal nitrates as starting materials and citric acid as complexing agent, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ powder phosphors were prepared by a citrate-gel method. Thermal analysis (TG-DTG), X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), photoluminescence excitation and emission, as well as kinetic decays were employed to characterize the resulting samples. The results of the XRD indicated the precursor samples began to crystallize at 800 °C and the crystallinity increased with elevation the annealing temperature. TEM images showed that the phosphor particles were basically of spherical shape, with good dispersion about a particle size of around 40-70 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+, and at around 543 nm corresponding to the 5D4-7F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+ (or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

10.
LiCaBO3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors were synthesized by a normal solid-state reaction using CaCO3, H3BO3, Li2CO3, Na2CO3, K2CO3, Eu2O3, Sm2O3, Tb4O7, CeO2 and Dy2O3 as starting materials. The emission and excitation spectra were measured by a SHIMADZU RF-540 UV spectrophotometer. And the results show that these phosphors can be excited effectively by near-ultraviolet light-emitting diodes (UVLED), and emit red, green and blue light. Consequently, these phosphors are promising phosphors for white light-emitting diodes (LEDs). Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

11.
The paper reports time-resolved emission and energy transfer (ET) studies of metal ion complexes of a specially designed rigid macrocyclic naphthalene cryptand (L) under different conditions. Complex formation of L with Li+ and H+ causes an appreciable increase in singlet state quantum yield and lifetime of L implying photoinduced electron transfer (PET) from the cryptand moiety to naphthalene unit in the free L. The system exhibits photoinduced ET at 77 K in its Tb3+ and Eu3+ complexes with either NO3−1 or Cl−1 as counter-anion. The extent of ET is higher for the Tb3+ complex as compared to that for the Eu3+ complex. In both Tb3+ and Eu3+ complex, the NO3−1 ions influence the relative orientation of donor (L) and acceptor (Ln3+) more in favour of ET than the Cl−1 ions. The rate constants for the ET from the naphthalene moiety of L to the acceptor (Ln3+) have been evaluated at 77 K. The results suggest ET from the triplet state of naphthalene using an exchange mechanism. The ground state geometries of the system L and its complexes with Li+, Cs+ and Tb3+ have been determined using DFT methods to interpret our results.  相似文献   

12.
Phosphors of nanoparticles LaSrAl3O7:RE3+(REEu, Tb) have been prepared by a sol–gel method. The structure and luminescent properties of LaSrAl3O7:Eu3+ and LaSrAl3O7:Tb3+ phosphors were characterized by X-ray diffraction and atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized. From X-ray diffraction (XRD) patterns, it is indicated that the phosphor LaSrAl3O7 forms without impurity phase at 900 °C. From atomic force microscopy (AFM) images, it is shown that the crystal size of the phosphores are about 60–80 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 545 nm corresponding to the 5D47F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+(or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

13.
Spectroscopic properties and energy transfer (ET) in Ga2O3-GeO2-Bi2O3-Na2O (GGBN, glass doped with Er3+ and rare earths (RE3+; RE3+=Ce3+, Tb3+) have been investigated. Intense 1.53-μm emission with the peak emission cross-section achieved to 7.58×10−21 cm2 from Er3+-doped GGBN glass has been obtained upon excitation at 980 nm. Effects of RE3+ (RE3+=Ce3+, Tb3+) codoping on the optical properties of Er3+-doped GGBN glass have been investigated and the possible ET mechanisms involved have also been discussed. Significant enhancement of the 1.53 μm emission intensity and decrease of upconversion (UC) fluorescence with increasing Ce3+ concentration have been observed. The incorporation of Tb3+ into Er3+-doped GGBN glass could significantly decrease the UC emission intensity, but meanwhile decrease the 1.53 μm emission intensity due to the ET from Er3+:4I13/2 to Tb3+:7F2. The results indicate that the incorporation of Ce3+ into Er3+-doped GGBN glass can effectively improve 1.53-μm and lower UC luminescence, which makes GGBN glass more attractive for use in C-band optical fiber amplifiers.  相似文献   

14.
Micro-sized NaY(MoO4)2:Tb3+ phosphors with dendritic morphology was synthesized by a ionic liquid-assisted hydrothermal process. X-ray diffraction (XRD) indicated that the as-prepared product is pure tetragonal phase of NaY(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images showed that the as-prepared NaY(MoO4)2:Tb3+ phosphors have dendritic morphology. The photoluminescent (PL) spectra displayed that the as-prepared NaY(MoO4)2:Tb3+ phosphors show a stronger green emission with main emission wavelength 545 nm corresponding to the 5D47F5 transition of Tb3+ ion, and the optimal Tb3+ doping concentration for obtaining maximum emission intensity was confirmed to be 10 mol%. Based on Van Uitert's and Dexter's models the electric dipole–dipole (D–D) interaction was confirmed to be responsible for the concentration quenching of 5D4 fluorescence of Tb3+ in the NaY(MoO4)2:Tb3+ phosphors. The intrinsic radiative transition lifetime of 5D4 level is found to be 0.703 ms.  相似文献   

15.
The preparation and upconversion luminescence properties of the Yb3+ and Tb3+ co-doped glass ceramics containing SrF2 nanocrystals were investigated. The formation of SrF2 nanocrystals was confirmed by X-ray diffraction and transmission electron microscopy. Both microstructural and spectral analysis indicated that the Yb3+ and Tb3+ ions were enriched in the precipitated SrF2 nanocrystals, which provide much lower phonon vibration energy than the glass matrix. Due to the efficient cooperative sensitization from Yb3+ to Tb3+ and the relatively low maximum phonon energy of SrF2 nanocrystals, the Yb3+ and Tb3+ co-doped glass ceramics exhibited intense upconversion luminescence, including ultraviolet emission at 382 nm.  相似文献   

16.
Non-radiative energy transfers (ET) from Ce3+ to Pr3+ in Y3Al5O12:Ce3+, Pr3+ and from Sm3+ to Eu3+ in CaMoO4:Sm3+, Eu3+ are studied based on photoluminescence spectroscopy and fluorescence decay patterns. The result indicates an electric dipole-dipole interaction that governs ET in the LED phosphors. For Ce3+ concentration of 0.01 in YAG:Ce3+, Pr3+, the rate constant and critical distance are evaluated to be 4.5×10−36 cm6 s−1 and 0.81 nm, respectively. An increase in the red emission line of Pr3+ relative to the yellow emission band of Ce3+, on increasing Ce3+ concentration is observed. This behavior is attributed to the increase of spectral overlap integrals between Ce3+ emission and Pr3+ excitation due to the fact that the yellow band shifts to the red spectral side with increasing Ce3+ concentration. In CaMoO4:Sm3+, Eu3+, Sm3+-Eu3+ transfer occurs from 4G5/2 of Sm3+ to 5D0 of Eu3+. The rate constant of 8.5×10−40 cm6 s−1 and the critical transfer distance of 0.89 nm are evaluated.  相似文献   

17.
以蒽醌(AQ)作为探针分子,利用激光光解技术研究了咪唑型离子液体1-丁基-3-甲基咪唑六氟化磷([bmim][PF6])与乙腈(MeCN)混合体系中的光化学反应行为.研究结果表明,离子液体[bmim][PF6]自身可与激发三线态的蒽醌分子(3AQ*)进行反应,且表观反应速率常数随着[bmim][PF6]/MeCN比例的不同呈现特殊规律性的变化.在离子液体的摩尔分数(xRTIL)为0.06处观察到一个明显的临界点.当xRTIL<0.06时,表观速率常数随xRTIL的增大而增大;而当xRTIL>0.06时,表观速率常数随xRTIL的增大而减小.文章给出了[bmim][PF6]/MeCN混合体系中激光诱导化学反应的动力学常数,并初步推测了其反应机理,进一步揭示了离子液体[bmim][PF6]的一些新的光化学特性.  相似文献   

18.
We have investigated the pressure-induced crystallization of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) associated with the conformational changes of [bmim]+ by Raman spectroscopy. [bmim]+ has trans-trans and gauche-trans (GT) conformers of the butyl side chain at ambient pressure. Our result revealed that liquid to solid-phase transition occurs at 0.2–0.4 GPa region, where the GT conformer becomes dominant. We found that the GT dominant state continues up to 4 GPa.  相似文献   

19.
The lanthanide ions reacted with the nucleotides to form a complex in which the lanthanides served as sensitive fluorescent probes. By selectively exciting the nucleotide, the quantum efficiency of narrow-line lanthanide ion fluorescence can be calculated. Quantum efficiency values of 0.19 to 0.01 and 0.14 to 0.01 were obtained for Tb+3 and Eu+3 respectively. For Dy+3 and Sm+3 the values were too low to measure accurately for most nucleotides. The binding of the lanthanides to the nucleotides can be reversed by prolonged dialysis against chelating agents. Between pH 3 and pH 7 the complex precipitates and approaches a maximum of lanthanide ion fluorescence at pH 5.5.  相似文献   

20.
The photoluminescence of Ce3+, Tb3+ and Mn2+ ions was investigated in the Zn(PO3)2 glass. The blue and green emissions of Tb3+ ions and the red emission of Mn2+ ions are enhanced upon UV excitation through a non-radiative energy transfer from Ce3+ to Tb3+ and Mn2+ ions. The efficiency of this transfer was estimated in at least 62%. It is demonstrated that this glass activated with three ions (Ce3+, Tb3+ and Mn2+) can generate white light emission (x=0.420 and y=0.423 chromaticity coordinates and 3440 K colour temperature) under excitation at 254 nm, i.e., using an AlGaN-based LED as excitation source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号