首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated the pressure-induced phase transition behavior (~3.0 GPa) of aqueous 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) solutions with N-methylacetamide (NMA), which is a simple protein model compound, using Raman spectroscopy. From Raman spectral changes and optical observation in the sequence of elevated pressure, we found that the aqueous [bmim][Cl] solution with NMA in the water-rich condition induces the high pressure crystallization at 2.6 GPa. On the other hand, in the [bmim][Cl]-rich condition, high pressure crystalline phase was not observed even up to 3.0 GPa. Our results show that the aqueous [bmim][Cl] solution in the ionic liquid-rich condition along with the use of pressure has a potential for protein-preserving solvent.  相似文献   

2.
As a probe of local structure, the vibrational properties of the 1‐butyl‐3‐methylimidazolium tetrafluoroborate [bmim][BF4] ionic liquid were studied by infrared (IR), Raman spectroscopy, and ab initio calculations. The coexistence of at least four [bmim]+ conformers (GG, GA, TA, and AA) at room temperature was established through unique spectral responses. The Raman modes characteristic of the two most stable [bmim]+ conformers, GA and AA, according to the ab initio calculations, increase in intensity with decreasing temperature. To assess the total spectral behavior of the ionic liquid both the contributions of different [bmim]+ conformers and the [bmim]+− [BF4] interactions to the vibrational spectra are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We present the first successful in situ simultaneous measurement of the electrical resistance and X-ray diffraction of FeH x (x~ 1) under high-pressure H2 up to 25.5 GPa and low temperatures down to 9 K. The electrical resistivity ρ showed a sharp increase with the formation of iron-hydride FeH x (x~ 1) at 3.5 GPa. The ?′-phase of FeH x was found to be metallic up to 25.5 GPa. The ρ vs. T curves up to 16.5 GPa approximately follow Fermi-liquid law below 25 K. However, T 5 was found to be better fitting at 25.5 GPa. This change can be considered to be related to the previously reported ferromagnetism collapse at corresponding pressure.  相似文献   

4.
The high-pressure and high-temperature behaviors of LiF and NaF have been studied up to 37 GPa and 1000 K. No phase transformations have been observed for LiF up to the maximum pressure reached. The B1 to B2 transition of NaF at room temperature was observed at ~28 GPa, this transition pressure decreases with temperature. Unit-cell volumes of LiF and NaF B1 phase measured at various pressures and temperatures were fitted using a P–V–T Birch–Murnaghan equation of state. For LiF, the determined parameters are: α0 = 1.05 (3)×10?4 K?1, dK/dT = ?0.025 (2) GPa/K, V 0 = 65.7 (1) Å3, K 0 = 73 (2) GPa, and K′ = 3.9 (2). For NaF, α0 = 1.34 (4)×10?4 K?1, dK/dT = ?0.020 (1) GPa/K, V 0 = 100.2 (2) Å3, K 0 = 46 (1) GPa, and K′ = 4.5 (1).  相似文献   

5.
We have measured the thermal diffusivity of eclogite and majorite with a model MORB composition at pressures of 3 and 15 GPa, respectively. Both phase assemblages show inverse dependences of their thermal diffusivities on temperature: D eclogite=9(10)×10?10+7(1)×10?4/T(K) m 2/s and D majorite=6.2(5)×10?7+3.0(5)×10?4/T(K) m 2/s. The values for majorite are in good agreement with previous measurements for other garnets and are considerably lower than thermal diffusivities of wadsleyite and ringwoodite, which are the main components of the mantle transition zone. We discuss the implications of the low thermal conductivity of subducted oceanic crust in the transition zone for the triggering of deep seismicity.  相似文献   

6.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

7.
We have studied the high pressure behavior of the α and β-phases of Tb 2(MoO 4)3 using a combination of powder X-ray diffraction and ab initio calculations. The α-Tb 2(MoO 4)3 phase did not undergo any structural phase transition in the pressure range from 0 up to the maximum experimental pressure of 21 GPa. We observed line broadening of the diffraction patterns at pressures above 7 GPa, which may be due to non-hydrostatic conditions. The complete amorphization of the sample was not reached in the pressure range studied, as expected from previous Raman studies. The behavior under pressure of the β-Tb 2(MoO 4)3 phase is similar to that of other rare-earths trimolybdates with the same structure at room temperature. A phase transition was observed at 2 GPa. The new phase, which can be identified as the δ-phase, has never been completely characterized by diffraction studies. A tentative indexation has been performed and good refined cell parameters were obtained. We detect indications of amorphization of the δ-Tb 2(MoO 4)3 phase at 5 GPa.  相似文献   

8.
Structural change in Bi2Te3 under high pressure up to 16.6 GPa has been studied by powder x-ray diffraction. We observed two times of phase transitions at room temperature at the pressures of 8 and 14 GPa, respectively. According to our preliminary result on electrical resistance, it is reasonable to suppose that superconducting transition with T c =2.8 K at the pressures of 10.2 GPa is observed in phase II. On the other hand, we found anomalies of the pressure dependences of lattice parameters and volume at around 2 GPa, which probably means the change in electrical structure on the Fermi surface.  相似文献   

9.
M.F. Wong 《哲学杂志》2013,93(26):3105-3128
The deformation behavior of [001]T- and [011]T-cut single crystal solid solution of Pb(Zn1/3Nb2/3)O3–6% PbTiO3 (PZN–6%PT) in both unpoled and poled states has been investigated by nanoindentation. Nanoindentation experiments reveal that material pile-up and local damage around the indentation impressions are observed at ultra-low loads. These pile-ups and local damage cause a pop-in event (i.e. a sudden increase in displacement at an approximately constant load) in the nanoindentation load–displacement curve (Ph curve). Detailed studies of the relationships between indentation load (P), displacement (h) and harmonic contact stiffness (S) suggest that there is a surface layer, possibly due to crystal fabrication processes, which possesses different mechanical properties from the interior. The thickness of this surface layer is estimated to be approximately 300 nm. Furthermore, it is found that [011]T-cut crystal is stiffer than [001]T-cut crystal. On the other hand, both [001]T- and [011]T-cut crystals in unpoled state possess lower contact stiffness than poled crystals. This finding suggests that poling improved the mechanical property of the crystal. In summary, poled [001]T-cut crystals have an elastic modulus of (107 ± 6) GPa and a hardness of (5.1 ± 0.4) GPa. In contrast, the modulus for [011]T-cut crystals is not constant but increases with indentation depth.  相似文献   

10.
The post-corundum phase transition has been investigated in Ti2O3 on the basis of synchrotron X-ray diffraction in a diamond anvil cell and transmission electron microscopy. The new polymorph of Ti2O3 was found at about 19 GPa and 1850 K, and this phase was stable even at about 40 GPa. A new polymorph of Ti2O3 can be indexed on a Pnma orthorhombic cell, and the unit-cell parameters are a=7.6965 (19) Å, b=2.8009 (9) Å, c=7.9300 (23) Å, V=170.95 (15) Å3 at 19 GPa, and a=7.8240 (2) Å, b=2.8502 (1) Å, c=8.1209 (3) Å, V=181.10 (1) Å3 at ambient conditions. The Birch–Murnaghan equation of state yields K 0=206 (3) GPa and K0=4 (fixed) for corundum phase, and K 0=296 (4) GPa and K0=4 (fixed) for the post-corundum phase. The molar volume decreases by 12% across the phase transition at around 20 GPa. The structural identification was carried out on a recovered sample by the Rietveld method, and a new polymorph of Ti2O3 can be identified as Th2S3-type rather than U2S3-type structure. The transition from corundum-type to Th2S3-type structure accompanies the drastic change of the form of polyhedron: from TiO6 octahedron in the corundum-type to TiO7 polyhedron in the Th2S3-type structures.  相似文献   

11.
The [13C]methacetin breath test ([13C]MBT) – a valuable non-invasive tool dedicated to the assessment of the liver metabolic capacity – still needs standardisation. The aim of this study was to check whether currently used dosage regimens of [13C]methacetin provide concordant [13C]MBT results in subjects with an atypical body constitution. Healthy volunteers: low body mass<55 kg (eight women), and high body mass>95 kg (eight large body frame men) were recruited. They underwent [13C]MBT on separate days, taking in random order [13C]methacetin: a fixed 75 mg dose (FX75), or a 1 mg kg?1 body mass-adjusted dose (BMAD). Samples of expiratory air for 13CO2 measurement were collected over 3 h. The maximum momentary 13C elimination in breath air occurred earlier and was higher following BMAD than with FX75 in the low body mass females (T max 14.6±1.0 min vs. 22.1±2.4 min, p=0.019; D max 41.9±2.9 % dose h?1 vs. 36.6±3.6 % dose h?1, p=0.071). In the high body mass men, T max remained unchanged, whereas D max was slightly higher with BMAD compared to FX75 (21.5±3.2 min vs. 23.0±3.0 min; 38.5±2.9 % dose h?1 vs. 32.3±2.5 % dose h?1). It is concluded that in subjects with a body constitution outside the general population average, the dosage of the substrate may affect some results of the [13C]MBT. The dosage-related differences appear, however, to be insignificant if the result of the [13C]MBT is reported as a cumulative 13C recovery in breath air.  相似文献   

12.
The surface layer of an equiatomic TiNi alloy, which exhibits the shape memory effect in the martensitic state, is modified with high-dose implantation of 65-keV N+ ions (the implantation dose is varied from 1017 to 1018 ions/cm2). TiNi samples are implanted by N+, Ni+-N+, and Mo+-W+ ions at a dose of 1017–1018 cm−2 and studied by Rutherford backscattering, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction (glancing geometry), and by measuring the nanohardness and the elastic modulus. A Ni+ concentration peak is detected between two maxima in the depth profile of the N+ ion concentration. X-ray diffraction (glancing geometry) of TiNi samples implanted by Ni+ and N+ ions shows the formation of the TiNi (B2), TiN, and Ni3N phases. In the initial state, the elastic modulus of the samples is E = 56 GPa at a hardness of H = 2.13 ± 0.30 GPa (at a depth of 150 nm). After double implantation by Ni+-N+ and W+-Mo+ ions, the hardness of the TiNi samples is ∼2.78 ± 0.95 GPa at a depth of 150 nm and 4.95 ± 2.25 GPa at a depth of 50 nm; the elastic modulus is 59 GPa. Annealing of the samples at 550°C leads to an increase in the hardness to 4.44 ± 1.45 GPa and a sharp increase in the elastic modulus to 236 ± 39 GPa. A correlation between the elemental composition, microstructure, shape memory effect, and mechanical properties of the near-surface layer in TiNi is found.  相似文献   

13.
Single crystal 400 nm thick Laves phase [20 Å?DyFe2/80 Å?YFe2]40 superlattice have been grown by MBE with a (110) growth direction. VSM measurements performed at room temperature with an applied field range of ±1.2×105 Oe, directed along the [001] direction, reveal a unique single-phase-liked ferrimagnetic behavior. A dominant exchange spring behavior is revealed by MOKE measurement along the [–110] direction. Furthermore, for striped arrays patterned along the [001] direction with height-to-width ratio of 0.05, a shape anisotropy of the order of 104 erg/cm3 is induced, resulting into a pronounced change of coercivity due to the comparable magnitude with intrinsic anisotropies. The results demonstrate the feasibility of engineering both single-phase-liked and exchange-spring magnet behavior in Laves phase epitaxial hard/soft superlattices by patterning.  相似文献   

14.
Pressure-induced structural changes on nano-crystalline La0.8Sr0.2Mn0.8Fe0.2O3 were studied using high-pressure Mössbauer spectroscopy and high-pressure X-ray diffraction. Mössbauer measurements up to 10 GPa showed first order transition at 0.52 GPa indicating transformation of Fe4?+? to high spin Fe3?+?, followed by another subtle transition at 3.7 GPa due to the convergence of two different configurations of Fe into one. High-pressure X-ray diffraction measurements carried up to 4.3 GPa showed similar results at 0.6 GPa as well as 3.6 GPa. Attempts were made to explain the changes at 0.6 GPa by reorientation of grain/grain boundaries due to uniaxial stress generated on the application of pressure. Similarly variation at 3.6 GPa can be explained by orthorhombic to monoclinic transition.  相似文献   

15.
Implantation of any ions at a sufficiently high dose and energy (E) into single-crystalline Si leads to the creation of amorphous Si (aSi), with damages peaking near the projected range (R p) of implanted species. Enhanced hydrostatic pressure (HP) at a high temperature (HT) influences the recrystallization of aSi. The structure of self-implanted Czochralski silicon (Si+ dose, D=2×1016 cm?2, E=150 keV, R p=0.22 μm) processed for 5 h at 1400 or 1520 K under HPs up to 1.45 GPa was investigated by X-ray, secondary ion mass spectrometry and photoluminescence methods. The implantation of Si produces vacancies (V) and self-interstitials (Sii). Vacancies and Siis form complex defects at HT–HP, also with contaminants (e.g. oxygen, always present in Czochralski silicon). The mobility and recombination of V and Sii as well as the kinetics of recrystallization are affected by HP, thus processing at HT–HP affects the recovery of aSi.  相似文献   

16.
The interaction between ammonium NH3 and H2O molecules in zeolitic nanopores is studied by in situ 1H nuclear magnetic resonance (NMR) method. The powder and single crystal samples of natural zeolites, heulandites Ca4[Al8Si28O72]·24H2O and clinoptilolite (Na, K,Ca1/2)6[Al6Si30O72], were used as the model system. It is shown that penetration of NH3 into the zeolitic nanopores is accompanied by disordering of the hydrogen sublattice of zeolitic water and by the fast proton exchange NH3 + H2O ? [NH4]+ + [OH]? characterized by correlation frequency v c = ~40 kHz. Another nanoreactor interactions are represented by interaction of [NH4]+ ions with exchangeable Na+ and Ca2+ ions of the zeolitic structure. The slow ionic exchange [NH4]+ → [Na,Ca1/2]+ and binding of [NH4]+ in cationic sites of the framework were visualized by NMR spectroscopy along with stepwise release of (Na,Ca1/2)OH from zeolitic pores to the external surface of zeolite grains.  相似文献   

17.
BaWO4-II has been synthesized at 5 GPa and 610°C. Its high pressure behavior was studied by in situ synchrotron X-ray diffraction measurements at room temperature up to 17 GPa. BaWO4-II retains its monoclinic structure. Bulk and axial moduli determined by fitting a third-order Birch–Murnaghan equation of state to lattice parameters are: K 0=86.2±1.9 GPa, K 0(a)=56.0±0.9 GPa, K 0(b)=85.3±2.4 GPa, and K 0(c)=146.1±3.2 GPa with a fixed K′=4. Analysis of axial compressible modulus shows that the a-axis is 2.61 times more compressible than the c-axis and 1.71 times more compressible than the b-axis. The beta angle decreases smoothly between room pressure and 17 GPa from 93.78° to 90.90°.  相似文献   

18.
L. Dai  H. Li  C. Liu  G. Su  S. Shan 《高压研究》2013,33(3):193-202
Electrical conductivities of pyroxenite were measured between frequencies of 10?1 and 106 Hz in a multi-anvil pressure apparatus using different solid buffers (Ni+NiO, Fe+Fe3O4, Fe+FeO and Mo+MoO2) to stabilize the partial pressure of oxygen. The temperature ranged from 1073 to 1423 K (800 to 1200 °C) and the pressure from 1.0 to 4.0 GPa. We observe that: (1) the electrical conductivity (σ) of pyroxenite depends on frequency; (2) σ tends to increase with rising temperature (T), and Log σ and 1/T obey a linear Arrhenius relationship; (3) under control of the buffer Fe+Fe3O4, σ tends to decrease with rising pressure, nevertheless the activation enthalpy tends to increase. For the first time we have obtained values for the activation energy and activation bulk volume of the main charge carriers, which are (1.60±0.07) eV and (0.05±0.03) cm3/mol, respectively; (4) for a given pressure and temperature, σ tends to rise with increased oxygen fugacity, whereas the activation enthalpy and preexponential factor tend to decrease; and (5) the behaviour of the electrical conductivity at high temperature and high pressure can be reasonably interpreted by assuming that small polarons provide the dominant conduction mechanism in the pyroxenite samples.  相似文献   

19.
The physical and mechanical properties of a C60 fullerene sample have been investigated under high pressure–high temperature conditions using a designer Diamond Anvil Cell. Electrical resistance measurements show evidence of C60 cage collapse at 20 GPa, which leads to the formation of an insulating phase at higher pressure. Energy dispersive X-ray diffraction (EDXD) data indicated that the characteristic fcc reflections gradually decrease in intensity and eventually disappear above 28 GPa. A C60 sample was laser-heated at a pressure of 35 GPa to a temperature of 1910±100 K and, subsequently, decompressed to ambient conditions. The photoluminescence spectra and the Raman spectrum of the pressure–temperature-treated sample were measured at a low temperature of 80 K. Raman peak at 1322.3 cm?1 with full-width half-maximum of 2.9 cm?1 was observed from the sample, which is attributed to the hexagonal diamond phase in the sample. The room temperature photoluminescence spectra showed a symmetric emission band centered in the red spectral range with a peak at 690 nm. The structural analysis of the pressure–temperature-processed C60 sample using EDXD method showed strong internal structure orientation and a phase close to hexagonal diamond. Mechanical properties such as hardness and Young’s modulus were measured by nanoindentation technique and the values were found to be 90±7 and 1215±50 GPa, respectively and these values are characteristic of sp3-bonded carbon materials.  相似文献   

20.
Density functional theory has been applied to study the geometric structures, relative stabilities, and electronic properties of cationic [AunRb]+ and Aun + 1+ (n = 1–10) clusters. For the lowest energy structures of [AunRb]+ clusters, the planar to three-dimensional transformation is found to occur at cluster size n = 4 and the Rb atoms prefer being located at the most highly coordinated position. The trends of the averaged atomic binding energies, fragmentation energies, second-order difference of energies, and energy gaps show pronounced even–odd alternations. It indicated that the clusters containing odd number of atoms maintain greater stability than the clusters in the vicinity. In particular, the [Au6Rb]+ clusters are the most stable isomer for [AunRb]+ clusters in the region of n = 1–10. The charges in [AunRb]+ clusters transfer from the Rb atoms to Aun host. Density of states revealed that the Au-5d, Au-5p, and Rb-4p orbitals hardly participated in bonding. In addition, it is found that the most favourable channel of the [AunRb]+ clusters is Rb+ cation ejection. The electronic localisation function (ELF) analysis of the [AunRb]+ clusters shown that strong interactions are not revealed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号