首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Speeds of sound have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol), propylene glycol monoethyl ether (1-ethoxy-2-propanol), propylene glycol monopropyl ether (1-propoxy-2-propanol), propylene glycol monobutyl ether (1-butoxy-2-propanol), and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol), with 1-butanol, and 2-butanol, at 298.15 K and atmospheric pressure. The speeds of sound values were combined with those of our previous results for excess molar volumes converted to densities to obtain isentropic compressibility κS. Deviation in isentropic compressibility ΔκS was evaluated using volume fraction weighting of the individual component properties to estimate ideal mixture behavior. The deviations uD of the speed of sound from their values in an ideal mixture were also evaluated for all measured mole fractions. The speeds of sound results have been used to estimate the apparent molar isentropic compressibility at infinite dilution.  相似文献   

2.
The densities ρ, speed of sound u, data of o-toluidine (i) + tetrahydropyran (j) + N,N-dimethylformamide (k) and its {tetrahydropyran (j) + N,N-dimethylformamide (k); o-toluidine (i) + N,N-dimethylformamide (k)} binaries have been measured as a function of composition at 298.15, 303.15 and 308.15 K. The excess molar enthalpies, HE data of same set of binary mixtures have also been measured over entire composition at 308.15 K. The densities and speeds of sound data of binary and ternary mixtures have been utilized to determine their excess molar volumes, VE and excess isentropic compressibilities, κSE. The observed thermodynamic properties of binary and ternary mixtures have been analyzed in terms of Graph theory. It has been observed that Graph theory correctly predicts the sign as well as magnitude of thermodynamic properties.  相似文献   

3.
《Journal of Molecular Liquids》2006,123(2-3):146-151
The excess molar volumes (VmE) and viscosities (η) for binary mixtures of dipropylene glycol tert-butyl ether with methanol, 1-propanol, 1-pentanol, and 1-heptanol and viscosities of dipropylene glycol monomethyl ether and dipropylene glycol monobutyl ether with methanol, 1-pentanol, and 1-heptanol have been reported at 298.15 K. The VmE are negative for the mixtures investigated. Sign and magnitude of VmE and viscosity deviations were used to analyze the mixing behavior of the components.  相似文献   

4.
The experimental densities (ρ), dynamic viscosities (η), speeds of sound (υ) and relative permittivities (εr) of thirty six binary mixtures of esters (methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate) + organic solvents (n-hexane, benzene, toluene, o-, m-, p- xylenes), + halogenated benzene (chloro-, bromobenzene), + nitrobenzene have been measured over the complete composition range at atmospheric pressure and temperatures (298.15 to 313.15 K). The excess molar volumes, VmE, excess isentropic compressibilities, κsE, deviations in relative permittivities, δεr have been calculated and fitted to Redlisch–Kister type equation. The dynamic and kinematic viscosities have been correlated through Grunberg–Nissan and MacAllister equations. The qualitative analysis of various functions revealed that i.) esters lose their dipolar association in presence of inert and unlike n-hexane, ii.) specific but weaker nπ type interactions predominate in binary mixtures of esters + aromatic organic solvents and iii.) weak electron donor–acceptor complexes predominate in the mixtures of esters with halogenated and nitrated benzene.  相似文献   

5.
Densities ρ, dynamic viscosities η, of the ternary mixture (diethylcarbonate + p-chloroacetophenone + 1-hexanol) and the involved binary mixtures (diethylcarbonate + p-chloroacetophenone), (diethylcarbonate + 1-hexanol), and (p-chloroacetophenone + 1-hexanol) have been measured over the whole composition range at 303.15 K for the liquid region and at ambient pressure. The data obtained are used to calculate excess molar volumes VmE, excess partial molar volumes V¯m,iE, limiting excess partial molar volumes V¯m,iE,∞, and viscosity deviations Δη, of the binary and ternary mixtures. The data of excess molar volumes of the binary systems were fitted to the Redlich–Kister equation while for the ternary system the Cibulka equation was used. The McAllister's four body, and Kalidas and Laddha interaction models are used to correlate the kinematic viscosities of binary and ternary mixtures, respectively, to determine the fitting parameters and the standard deviations. The experimental data of the constitute binaries and ternary are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

6.
Speed of sound and densities of the ternary mixture 2-propanol + diethyl ether + n-hexane and also the binary mixtures 2-propanol + diethyl ether and 2-propanol + n-hexane have been measured at the entire composition range at 298.15 K. The excess isentropic compressibilities and the excess speed of the sound have been calculated from experimental densities and speed of sound. These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka’s equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary mixtures and also the ternary mixtures. Speed of sound of the binary mixtures and the ternary mixture have been compared with calculated values from free length theory (FLT), collision factor theory (CFT), Nomoto’s relation (NR), Van Deal’s ideal mixing relation (IMR) and Junjie’s relation (JR). The results are used to compare the relative merits of these theories and relations in terms of the root mean square deviation relative (RMSDr).  相似文献   

7.
The densities ρ, viscosities η, and refractive indices nD of binary mixtures of dimethyl carbonate (DMC) with acetophenone, cyclopentanone, cyclohexanone, and 3-pentanone have been measured over the entire range of composition at the temperatures 303.15, 308.15 and 313.15 K and at atmospheric pressure. The density values were used to calculate excess molar volumes VE, and other excess functions of interest such as deviations in viscosity Δη, excess Gibb's free energies of activation of viscous flow ΔGE and deviations in molar refraction ΔR. The measured viscosities were compared with those predicted using the Grunberg-Nissan, Eyring-Margules, Soliman-Marshall, and McAllister four body models. Furthermore the refractive indices data have been correlated using Lorentz-Lorentz, Weiner, Newton, Gladstone-Dale, Eykman, and Eyring-John equations and a satisfactory agreement was found for all the binary systems studied in the present work.  相似文献   

8.
Densities and viscosities have been measured as a function of composition for the binary liquid mixture of diethylene glycol monomethyl ether CH3O(CH2)2O(CH2)2OH + water at T = (293.15, 303.15, 313.15, 323.15, 333.15) K under atmospheric pressure. Densities were determined using a capillary pycnometer. Viscosities were measured with Ubbelohde capillary viscometer. From the experimental data, the excess molar volumes VE, and viscosity deviations δη, and the excess energies of activation for viscous flow ΔG*E were calculated. These data have been correlated by the Redlich–Kister type equations to obtain their coefficients and standard deviations. The results suggest that molecular interaction between diethylene glycol monomethyl ether and water is strong.  相似文献   

9.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

10.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

11.
The emission spectra of the 0-2, 4-2, and 6-1 bands of the Comet-Tail (A2Πi − X2Σ+) system in the 14C16O+ isotopic molecule, comprising nearly 600 lines, have been recorded and analyzed for the first time. The spectra have been photographed under high resolution by using conventional spectroscopy, and it was possible to separate and observe most of the lines of all the 12 branches of this transition. The reduction of the individual bands’ spectra has been performed by nonlinear least-squares procedure and by means of effective Hamiltonians of Brown et al. the rovibronic structure parameters have been obtained. The currently investigated bands of the Comet-Tail system and the earlier analyzed bands of the A − X and B − A systems in the 14C16O+ molecule have been merged together. The results of this global fit made it possible to derive a new set of the equilibrium molecular constants for the A and X states. Then the RKR potential curve parameters for both A and X states and Franck-Condon factors as well as r-centroids for the A − X transition have been calculated for the 14C16O+ molecule.  相似文献   

12.
The pure rotational J + 1 ← J transitions, with J = 0, 1, 3-8, of H13CN have been observed in the millimeter- and submillimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to H, 13C, and 14N. The present observations allow us to provide for the first time the spin-rotation constant of 13C and the spin-spin interaction constant S12 (between H and 13C) as well as to remarkably improve the quadrupole coupling and spin-rotation constants of 14N. In addition, a good empirical estimation of CI(H), based on ab initio calculations, has also been provided. Furthermore, our frequencies together with previous data permit to determine the most accurate ground state rotational parameters known up to now.  相似文献   

13.
V Vyas  T Nautiyal 《Pramana》2002,59(4):663-670
Excess molar volumes (V E) and deviation in isentropic compressibilities (Δβ s) have been investigated from the density ρ and speed of sound u measurements of six binary liquid mixtures containing n-alkanes over the entire range of composition at 298.15 K. Excess molar volume exhibits inversion in sign in one binary mixture, i.e., n-heptane + n-hexane. Remaining five binary mixtures, n-heptane + toluene, cyclohexane + n-heptane, cyclohexane + n-hexane, toluene + n-hexane and n-decane + n-hexane show negative excess molar volumes over the whole composition range. However, the large negative values of excess molar volume becomes domainant in toluene + n-hexane mixture. Deviation in isentropic compressibility is negative over the whole range of composition in the case of all the six binary mixtures. Existence of specific intermolecular interactions in the mixtures has been analyzed in terms of excess molar volume and deviation in isentropic compressibility.  相似文献   

14.
The transfer reaction of negative muons from muonic protium to 3 and 4 in binary and triple gas mixtures was studied. In the binary mixtures the transfer rates to the two helium isotopes were determined from the time distribution of the 7-keV X-rays of the intermediate muonic molecule (pμHe)*. The experimental transfer rate to 4 is in good agreement with theoretical predictions, whereas the rate to 3 is a factor 2 to 3 smaller than the predicted ones. Radiative branching ratios of the (pμHe)8 molecular decay were obtained. Muon transfer from excited states of muonic protium gives the main contribution to the total intensity of the μHe Lyman series in the binary mixtures. Values of q 1s He are determined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The binary composite ionic liquid mixtures composed of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) were studied and used in electroreduction of nitrobenzene for the first time. 1H NMR and Fourier transform infrared (FTIR) spectroscopy were carried out to acquire a deep understanding of the interaction of binary ionic liquids, and UV/Vis spectroscopy was used to study the interaction between the mixture of ionic liquids and nitrobenzene. It was found that chemical shifts of all protons were changed and significant changes in the anion IR bands were induced, and the UV maximum absorption wavelength and absorbance of nitrobenzene in binary ionic liquids were different from those in the neat ionic liquid. The electrochemical reduction behavior of nitrobenzene in binary composite ionic liquids on platinum electrode was studied by cyclic voltammetry, in situ Fourier transform infrared spectroscopy, and constant potential electrolysis. Results indicated that the reduction of nitrobenzene in binary composite ionic liquids demonstrated higher current densities with a more positive potential, and the product (azobenzene) showed higher yield and selectivity in the composite ionic liquids than in the neat ionic liquids; the concentrations of water in the binary mixtures of ionic liquids had great effect on the electrochemical behavior of nitrobenzene. In the end, the mechanism of reduction of nitrobenzene in binary mixtures of ionic liquids was discussed.  相似文献   

16.
Absorption spectra of HDO/D2O mixtures recorded in the 5600-8800 cm−1 region with a total pressure of water from 13 up to 18 hPa and an absorption path length of 600 m have been analyzed in order to obtain new spectroscopic data for HD18O and D218O. In spite of the low natural 18O concentration (about 2×10−3 with respect to the 16O one), about 1100 transitions belonging to HD18O and more than 280 transitions belonging to D218O have been assigned. Most of the D218O transitions belong to the ν1+ν2+ν3 and 2ν1+ν3 bands. Sets of energy levels for seven vibrational states of D218O and four states of HD18O are reported for the first time. The comparison of the experimental data with the calculated values based on Partridge-Schwenke global variational calculations is discussed.  相似文献   

17.
The crystal structure of [C(NH2)3]2HgBr4 has been determined at room temperature: monoclinic, space group C2/c, with a = 10.035(2), b = 11.164(2), c = 13.358(3) Å, β = 111.67(3)°, and Z = 4. The crystal consists of planar [C(NH2)3]+ and distorted tetrahedral [HgBr4]2? ions. The Hg atom is located on a two-fold axis such that two sets of inequivalent Br atoms exist in an [HgBr4]2? ion. In accordance with the crystal structure, two 81Br NQR lines widely separated in frequency were observed between 77 and ca. 380 K. [C(NH2)3]2HgI4 yielded four 127I NQR lines ascribable to m = ±1/2 ? ±3/2 transitions, indicating that its crystal structure is different from the bromide complex. The 1H NMR T 1 measurements showed a single minimum for the bromide but two minima for the iodide. The analyses based on the C3 reorientations of the planar [C(NH2)3]+ ions gave the activation energies of 29.8 kJ mol?1 for the bromide, and 30.2 and 40.0 kJ mol?1 for the iodide.  相似文献   

18.
Dielectric relaxation and dipole moment of binary mixtures of homologous series of mono alkyl ethers of ethylene glycol and of diethylene glycol, i.e., mono methyl, mono ethyl and mono butyl ethers of ethylene glycol (ROCH2CH2OH) and mono methyl, mono ethyl and mono butyl ethers of diethylene glycol (ROCH2CH2OCH2CH2OH) with ethyl alcohol (C2H5OH) of different concentrations were studied in dilute solutions of benzene, dioxane and carbon tetrachloride at 35 °C. Permittivity (ε′) and loss (ε″) at 10.1 GHz, static dielectric constant εo at 1 MHz and high frequency limiting dielectric constant ε = nD2 at optical frequency of these molecules and their binary mixtures at different concentration were measured in dilute solutions of non-polar solvents. The average relaxation time τo, relaxation times corresponding to overall molecular reorientation τ1 and group rotations τ2 were determined using Higasi's single frequency measurement equations for dilute solutions. The evaluated values of relaxation times and free energy of activation ΔF were used to explore the solvent effect on molecular dynamics of these polar binary systems in non-polar solvents. The excess inverse relaxation time and excess free energy of activation were determined to confirm the existence of hydrogen-bonded heterogeneous cooperative domains of the ethers and alcohol molecules at different concentration their binary mixtures in non-polar solvents. The dipole moment of the binary mixtures was evaluated using Higasi's and Guggenheim's equation for dilute solutions. The evaluated values of dipole moments and computed dipole moment values using a simple mixing equation of the polar molecules binary mixture were used to explore the effect of non-polar solvent environment on heterogeneous molecular interactions between ethers and alcohol molecules. The effect of number of carbon atoms in the molecular structure of these homologous series molecules was also considered for the interpretation of various evaluated dielectric parameters.  相似文献   

19.
《光谱学快报》2013,46(3):267-277
The bridged ruthenium cluster-polypyridine dimer [Ru3O(CH3COO)6(py)2(tmbpy)Ru(bpy)2(Cl)](PF6)2 (py = pyridine, = 2, 2′-bipyridine and tmbpy = 4, 4′-trimethylenedipyridine) has been synthesized and structurally characterized based on 1H and 13C NMR spectroscopy. This species exhibits a complex pattern of NMR signals due to the presence of a paramagnetic [Ru3O] core and seven non-equivalent aromatic rings. 2D NMR (COSY, HMQC and HMBC) correlation techniques have been required for the total assignment of the 1H and 13C NMR spectra.  相似文献   

20.
Densities ρ, speeds of sound u, viscosities η and refractive indices nD of binary mixtures of octan-2-ol with benzene, chlorobenzene and bromobenzene have been measured over the entire range of composition at 298.15 and 303.15 K and atmospheric pressure. From the experimental data, excess molar volumes VE, isentropic compressibilities κS, excess isentropic compressibilities κSE, and deviations of speeds of sound uD, have been calculated at 298.15 and 303.15 K. These excess functions have been fitted to the Redlich-Kister polynomial equation. The viscosity data have been correlated using Kendall-Monroe, Grunberg-Nissan, Tamura-Kurata, Hind-Mclaughlin Ubbelohde and Katti-Chaudhary viscosity models, and McAllister's three-body interaction model at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号