首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 415 毫秒
1.
陈一民  向卫东 《发光学报》1995,16(4):262-264
自从Bhargava等[1]报道了化学反应合成的ZnS:Mn2+纳米微粒的光学性质,掺杂半导体纳米微粒发光性质的研究受到了极大的重视。掺杂纳米微粒有可能成为新的一类发光材料.本文报导用熔融法制备的ZnS:Mn2+玻璃在光学性质上的量子尺寸效应。  相似文献   

2.
红色长余辉材料Mg2SiO4:Dy3+,Mn2+的制备及发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
林林  尹民  施朝淑  张慰萍  徐美 《发光学报》2006,27(3):331-336
用高温固相法制备了长余辉发光材料Mg2SiO4:Dy3+,Mn2+,对这种材料的红色长余辉性质进行了研究.对以不同掺杂浓度单掺杂Mn2+、单掺杂Dy3+以及双掺杂Dy3+,Mn2+的Mg2SiO4体系,通过在紫外激发下的发射光谱及其激发光谱的研究,确认了在双掺杂体系中,峰值为660nm的发光带对应着Mn2+4T1(4G)→6A1(6S)跃迁,Mn2+为主要发光中心.Mn2+的660nm发射的激发谱分布很宽,样品在近紫外和可见光区都有良好的吸收,长波边可达600nm,是这种材料的一个显著优点.还研究了双掺杂体系中Dy3+对Mn2+的660nm发光带的敏化作用.另外,通过对单掺杂、双掺杂体系热释光曲线的比较,揭示了双掺杂体系中Dy3+的陷阱作用.  相似文献   

3.
低温扩散Mn2+制备ZnSⅩⅣMn,Cu电致发光材料   总被引:4,自引:0,他引:4  
韦志仁  李志强 《发光学报》1997,18(4):283-285
研究了不同Mn的化合物掺杂在不同退火处理条件下对ZnSⅩⅣMn,CuACEL粉末的发光亮度的影响.在低温下扩散Mn2+掺杂的方法,有效降低了Mn盐中其它杂质对发光的影响,和直接高温法制备的ZnSⅩⅣMn,CuACEL材料相比,提高了材料的发光亮度.  相似文献   

4.
采用高温固相法合成了BaZnP2O7:Eu2+,Mn2+荧光粉,并对其发光性质及Eu2+对Mn2+的能量传递机理进行了研究.Eu2+和Mn2+在380 nm和670nm的发射峰分别由Eu2+的5d—4f跃迁和Mn2+4T1(4关键词: 磷酸盐 2+')" href="#">Eu2+ 2+')" href="#">Mn2+ 能量传递  相似文献   

5.
SrB4O7:Pr3+,Mn2+中的Pr→Mn能量传递   总被引:1,自引:0,他引:1       下载免费PDF全文
从能量传递的角度出发,利用同步辐射光源(德国HASYLAB实验室的SUPERLUMI实验站)对Pr3+和Mn2+掺杂的SrB4O7粉末样品进行了光谱研究.206nm激发下,在SrB4O7:Pr3+(0.1%,摩尔分数)样品中观察到了来自Pr3+离子1S0能级的光子级联发射.SrB4O7:Pr3+样品的发射谱与SrB4O7:Mn2+样品监测Mn2+离子640nm发射的激发谱在330~430nm的波长范围里存在显著的光谱重叠.这个光谱重叠有利于Pr3+→Mn2+的能量传递发生,从而将Pr3+离子级联发射中第一步不实用的紫外或近紫外光子转换为Mn2+的红光发射.双掺杂样品SrB4O7:Pr3+,Mn2+与单掺杂样品SrB4O7:Pr3+的发射谱比较揭示出Pr3+→Mn2+的能量传递的确存在,并且提供了一种传递效率的估算方法,表明通过“Pr3+-Mn2+”组合有可能获得量子效率大于1的高效真空紫外激发发光材料.  相似文献   

6.
闫阔  段昌奎 《发光学报》1998,19(1):8-13
纳米晶体ZnS:Mn2+中Mn2+粒子4T16A1的发光寿命比晶体减缩了5个量级,这颇令人费解,因为通常解除自旋禁戒的磁作用远无如此强的效应.假定基质态的自旋不为零,且考虑了Mn2+的d电子和基质之间的交换库仑作用.若基质存在比Mn2+4T1激发态能量略高的某种激发态,则这种交换库仑作用将导致这两种激发态之间的混合,从而可解除发光能级弛豫中的自旋禁戒.这种混合随基质颗粒尺寸的减小而加强.我们并对此机制进行粗略的数值估计,给出了和实验相容的结果.  相似文献   

7.
王雪  田莲花 《发光学报》2011,32(11):1109-1114
采用高温固相法,制得一种新型荧光粉Na4Ca3(AlO2)10∶Eu2+,Mn2+。样品的结构和发光性质分别由X射线衍射谱和荧光光谱来表征。在Na4Ca3(AlO2)10∶Eu2+的激发光谱中出现了Eu2+的f-d跃迁吸收带;在发射光谱中,出现蓝光发射,峰值位于441 nm。当在Na4Ca3(AlO2)10∶Eu2+中掺杂Mn2+时,发生了Eu2+→Mn2+的能量传递,在542 nm处出现了Mn2+的发射峰。在Na4Ca3(AlO2)10∶Eu2+,Mn2+中,随着Mn2+浓度的增加,Eu2+粒子的发射强度减弱,而Mn2+粒子的发射强度增强,且Eu2+离子发射的衰减时间缩短,同时色度由蓝光移向白光。  相似文献   

8.
用高温固相反应法合成了Ba2SiO4:xCe3+,yMn2+(x=0~0.2, y=0~0.15)荧光粉,研究了荧光粉的晶体结构和发光性质。在紫外光激发下,Ba2SiO4:xCe3+的发射光谱为位于384 nm附近的宽带。Ba2SiO4:Mn2+样品的发射光谱位于376 nm的宽带较强,红光发射极弱。在Ce3+和Mn2+共掺的Ba2SiO4:xCe3+,yMn2+样品中,位于606 nm附近的红光发射较强,来源于Mn2+4T1(4G)-6A1(6S)跃迁。这说明Ce3+离子将部分能量传递给了Mn2+离子,有效地敏化了Mn2+离子的发光。当Ce3+的摩尔分数为0.2、Mn2+的摩尔分数为0.075时,Ba2SiO4:xCe3+,yMn2+荧光粉位于606 nm的Mn2+的发射峰最强。  相似文献   

9.
熊晓波  袁曦明  刘金存  宋江齐 《物理学报》2015,64(1):17801-017801
采用高温固相法制备了Na2SrMg(PO4)2: Ce3+, Mn2+ (NSMP: Ce3+, Mn2+) 荧光粉, 并对其发光性质及Ce3+ 对Mn2+ 的能量传递机理进行了研究. Ce3+ 和Mn2+ 在334 nm 和617 nm 的发射峰分别为Ce3+ 的5d→4f 跃迁和Mn2+4T1(4G)→6A1(6S) 跃迁产生. Ce3+ 对Mn2+ 的发光有较强的敏化作用, 根据Dexter能量传递效率公式判断Na2SrMg(PO4)2 中Ce3+ 对Mn2+ 的能量传递属于电偶极-电四极相互作用引起的共振能量传递.  相似文献   

10.
Mn4+掺杂的新型铝酸盐红色长余辉材料   总被引:1,自引:0,他引:1       下载免费PDF全文
闫武钊  林林  陈永虎  尹民 《发光学报》2008,29(1):114-118
用高温固相法合成了红色长余辉发光材料LiAl5O8:Mn4+,Li5AlO4:Mn4+,LiAlO2:Mn4+,发现前两种材料有红色余辉,这方面并没有报道过,并对这两种材料的发光性能作了研究,指明了不同基质中发光强弱不同原因。对不同Mn4+掺杂浓度的材料做了浓度依赖关系研究,确认Mn4+的发光是2E→4A2的跃迁。Mn4+的发光是个宽带谱,材料在紫外区有强的吸收,发射谱范围可达620~770nm,峰值在675nm。对长余辉机制进行了探讨。  相似文献   

11.
Eu,Dy共掺杂SrAl2O4长余辉材料制备新工艺   总被引:6,自引:6,他引:0       下载免费PDF全文
活化Al-Sr合金粉末水解制备SrAl2O4长余辉材料的前驱体,并采用高温固相反应法制备出Eu,Dy共掺杂的SrAl2O4长余辉材料,对其微观结构和发光特性进行了研究。实验结果表明:前驱体中Al、Sr元素在微观状态下分布均匀,所制成的长余辉发光材料的发射主峰位于520nm附近,为典型的Eu2+离子4f5d-4f的特征发射,初始亮度达到18cd/m2,余辉时间长达46h。  相似文献   

12.
王芳  宋宏伟  董彪 《发光学报》2008,29(1):102-106
采用高温固相法合成了2SrO·0.25B2O3·0.75P2O5:RE3+(RE=Ce,Tb)荧光粉。研究了其中Ce3+,Tb3+的光谱性质,Ce3+和Tb3+共掺杂时的能量传递效率,以及Ce3+和Tb3+的动力学过程。发现在共掺杂的样品中,Tb3+5D47F5绿色发射比Tb3+单掺杂样品中的绿色发射有显著的提高。当Tb3+的含量从1%增加到8%时,Ce3+→Tb3+的能量传递效率逐渐增加至70%。通过动力学研究,在Ce3+和Tb3+共掺杂的样品中,提高Tb3+的浓度,Ce3+的寿命减小。此外,Ce3+离子寿命的倒数与Tb3+的浓度之间很好地符合线性函数关系,经过拟合Ce3+离子的电子跃迁速率和Ce3+→Tb3+的能量传递速率分别为5.1×10-2和1.34ns-1·mol-1。Tb3+5D47F5跃迁的衰减曲线很好地遵守指数式衰减,并且随着Ce3+的掺杂浓度提高,Tb3+5D47F5寿命增加。结果表明在共掺杂的2SrO·0.25B2O3·0.75P2O5材料中存在Ce3+到Tb3+的有效能量传递,这种材料在541nm处有着较强的绿光发射,所以将在发光以及显示领域有潜在的应用前景。  相似文献   

13.
彭玲玲  曹仕秀  赵聪  刘碧桃  韩涛  李凤  黎小敏 《物理学报》2018,67(18):187801-187801
采用高温固相法在空气气氛中合成了新型Mg_(1+y)Al_(2-x)O_4:xMn~(4+),yMg~(2+)深红色荧光粉.利用X射线衍射仪、扫描电子显微镜和荧光光谱仪表征荧光粉的晶体结构和形貌,并分析了发光性质,讨论了掺杂不同浓度Mn4+和过量Mg2+对样品发光强度的影响.结果表明,在300 nm波长激发下样品发射652 nm波长的红光,归因于Mn~(4+)的~2Eg—~4A_(2g)跃迁, Mn~(4+)的最佳掺杂浓度为0.14%.采用Blasse公式计算了Mn~(4+)-Mn~(4+)之间能量传递的临界距离,讨论了可能的能量传递过程和引起浓度淬灭的原因,采用Tanabe-Sugano能级图从理论上计算和分析了Mn~(4+)的d~3电子构型的晶体场强度大小.过量Mg~(2+)可以提高荧光粉的发光强度,同时导致了荧光寿命的缩短,荧光衰减曲线呈单指数变化.探讨了过量Mg~(2+)增强发光强度的机理,阐述了深红色荧光粉MgAl_2O_4:Mn~(4+)发光效率提高的原因.  相似文献   

14.
报道了稀上铕(Eu3+)与吡啶-2,6-二甲酸(H2DPC)及邻啡啉(Phen)形成的二元和三元固体配合物的制备.对它们进行了元素分析,确定该配合物的组成为二元Na3[Eu(DPC)3]·2H2O和三元NaEu(DPC)2·4H2O,对上述配合物的结构作了核磁共振氢谱(1H NMR)、碳谱(13CNMR)和氮谱(14N NMR)及红外光谱(IR)的研究.吡啶-2,6-二甲酸中的羧基以单齿配位(整个分子为三齿配位),二、三元配合物中铕的配位数分别为9和8.  相似文献   

15.
杨素红  赵立山  王强  沈容  孙刚  李晨曦  陆坤权 《物理学报》2013,62(16):164701-164701
制备了二氧化钛前驱体粉体, 它具有优良的巨电流变效应, 但不含一水草酸钙的成分. 通过X射线衍射谱、扫描电子显微镜、电感耦合等离子体光谱仪和热失重-质谱联用仪等一系列实验手段, 对二氧化钛前驱体粉体进行了表征, 发现它是非晶形态的纳米粉体, 其主要成分为TiOC2O4·2H2O和TiO(OH)2. 由二氧化钛前驱体配置的电流变液具有与钛酸钙前驱体电流变液类似的温度特征, 即 当处理温度超过160℃后, 电流变液的屈服强度会逐渐降低, 至200℃后, 巨电流变效应完全消失. 通过对比分析发现, 伴随上述巨电流变效应消失过程的化学反应是TiOC2O4·2H2O 在加热过程中失去了结晶水. 这些特征在所有钛酸盐系列的电流变液中均可观察到, 因此我们推断TiOC2O4·2H2O是钛酸盐系列巨电流变液中的关键物质. 关键词: 电流变液 钛酸盐 极性分子  相似文献   

16.
Electrolytic colouration at about 600°C and 350 V/cm, for KCl crystal containing Pb2+ and for KCl:Pb2+ crystals co-doped with Li+, Na+ and Rb+ has been undertaken. Several absorption bands were observed in both doped and co-doped crystals in the visible-UV region. Excitation into these bands gives rise to the same 0.86 eV emission band except for the Li+-co-doped crystal which gives rise to a 0.80 eV emission band. These absorption bands are due to the same Ta-centre related to Pb. The observed infrared emission intensity of the crystal with F-centres is higher than of without F-centres.  相似文献   

17.
采用高温固相反应法合成了Zn_2GeO_4∶xMn~(2+)系列绿色长余辉磷光粉。XRD分析结果表明,掺锰磷光粉的主要衍射峰位与锗酸锌晶体标准卡基本一致,但略有红移。SEM照片显示,相对于Zn_2GeO_4基质平均粒径而言,掺锰磷光粉的颗粒尺寸均增大。在325 nm紫外光激发下,Zn_2GeO_4∶Mn~(2+)发射出强的530 nm绿光,优化掺锰离子浓度为0.5%。同时发现Zn_2GeO_4∶0.2Mn~(2+)磷光粉暗场条件下的余辉时间超过180 min,详细讨论了Zn_2GeO_4∶Mn~(2+)长余辉发光的内在机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号