首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
通过高温固相法合成Ca_2GdZr_2Al_3O_(12)…Mn~(4+)等一系列荧光粉,利用X射线粉末衍射仪(XRD)、荧光分光光度计和紫外可见分光光度计对其物相结构和发光性能进行表征。基质结构表明,[ZrO_6]八面体中的Zr~(4+)可以被Mn~(4+)取代,XRD图谱和不同温度下合成的荧光粉的发光强度表明,1500℃为适宜的合成温度。当Mn~(4+)掺杂浓度(物质的量分数)为0.0050时,发光强度最大;当检测波长为703 nm时,激发波长随Mn~(4+)掺杂浓度的增加从343 nm移动到374 nm。利用光谱数据计算晶体场参数D_q和Racah参数(B和C),结果表明,Mn~(4+)处于强场中。Bi~(3+)、Mn~(4+)共掺杂可以增强Mn~(4+)的发光,荧光寿命测试结果表明,共掺时荧光粉的荧光寿命均长于Mn~(4+)单掺荧光粉,存在Bi~(3+)→Mn~(4+)的能量传递。  相似文献   

2.
采用传统固相法在1 100℃合成了SrGe_(4-x)O_9∶xMn~(4+)(SGOM)系列荧光粉,通过Ba~(2+)取代Sr~(2+)调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明,Mn~(4+)和Ba~(2+)均成功地掺杂进入基质SrGe_4O_9晶格,没有其他物相产生。在275 nm紫外光激发下,SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn~(4+)离子~2E_g→~4A_(2g)能级跃迁的窄带发射,优化的Mn~(4+)浓度为0.015。利用Ba~(2+)离子对SrGe_(3.985)O_9∶0.015Mn~(4+)荧光粉的发光性质进行调控,发现随着Ba~(2+)浓度增大,发射光谱的强度先上升后下降,最佳Ba~(2+)浓度为0.4。Ba~(2+)离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe_(3.985)O_9∶0.015Mn~(4+)荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。  相似文献   

3.
采用溶胶凝胶法合成CaYAl_(1-x)O_4∶xMn~(4+)红色荧光粉,用差热热重分析仪(DSC-TGA)、X射线粉末衍射仪(XRD)、透射电镜(TEM)以及荧光分光光度计对荧光粉进行结构和性能的表征,研究合成温度、反应时间及Mn~(4+)掺杂浓度对CaYAl_(1-x)O_4∶xMn~(4+)发光性能的影响。研究结果表明,在335 nm光激发下,荧光粉发射660~780 nm范围的红光,归属于Mn~(4+)的~2E_g→~4A_(2g)能级跃迁。在712 nm光监测下,样品呈现两组激发宽峰,分别归属于Mn~(4+)离子的~4A_(2g)→~4T_(1g)(335 nm)和~4A_(2g)→~4T_(2g)(475 nm)能级跃迁。当煅烧温度为1 200℃、反应时间为6 h和Mn~(4+)的掺杂摩尔分数为0.5%时,CaYAl_(1-x)O_4∶xMn~(4+)的发光强度最大。  相似文献   

4.
采用两步烧结法低温制备了Sr_2MgAl_(22)O_(36)∶Mn~(4+)-(SiO_2-Al_2O_3-ZnO-BaO)荧光玻璃(SMA∶Mn~(4+)-PiG)。通过X射线衍射、扫描电镜、光致激发和发射光谱、荧光衰减曲线等手段对其物相、成分与发光性能进行了研究。实验结果表明,形成PiG后,SMA∶Mn~(4+)荧光粉的物相和元素组成保持不变。不同SAM∶Mn~(4+)含量的PiG样品在328 nm光激发下,在661 nm处均显示强的发射带,归属于荧光粉中Mn~(4+)的~2E→~4A_2跃迁,发光光谱与植物光敏色素的红区吸收光谱匹配良好。随着荧光粉含量的增加,SAM∶Mn~(4+)-PiG的发光强度逐渐增大。15%SMA∶Mn~(4+)-PiG样品的内、外量子效率分别为26%和20%,低于SMA∶Mn~(4+)荧光粉的59%和40%。相比于SMA∶Mn~(4+)荧光粉,荧光玻璃的吸收效率和热稳定性略有提高。通过与高功率紫外芯片封装,SMA∶Mn~(4+)-PiG红光LED器件在100 mA驱动电流下展现了最高的电致发光强度。  相似文献   

5.
王林香  庹娟  叶颖  赵海琴 《中国光学》2019,12(1):112-121
用微波高温固相法合成了Er~(3+)单掺Lu_2O_3,Li~+与Er~(3+)共掺Lu_2O_3及Li~+,Zn~(2+),Mg~(2+)掺杂Lu_2O_3∶Er~(3+)的荧光粉。实验表明金属离子Li~+、Zn~(2+)、Mg~(2+)、Er~(3+)掺杂Lu_2O_3,不影响Lu_2O_3的立方晶相。扫描电子显微镜测量表明,Li~+掺杂可以有效改善粉体的分散性和形貌,Li~+,Zn~(2+),Mg~(2+)共掺杂获得的粉体颗粒分布更加均匀,粒径范围为80~100 nm。379 nm激发下,Li~+与Er~(3+)共掺样品发光较单掺Er~(3+)样品在565 nm处的发光增强了4.5倍,而Li~+、Zn~(2+)、Mg~(2+)与Er~(3+)共掺样品较其发光增强5.3倍。980 nm激发下,Li~+与Er~(3+)共掺样品,Li~+、Zn~(2+)、Mg~(2+)与Er~(3+)共掺样品的发光分别比单掺Er~(3+)样品在565 nm处发光增强23倍与39倍,在662 nm处发光强度分别增强20倍与43倍。379 nm激发下,较单掺Er~(3+)的样品,掺杂Li~+的样品和Li~+,Zn~(2+),Mg~(2+)和Er~(3+)共掺的样品荧光寿命均有所增加,而Zn~(2+)、Er~(3+)共掺及Mg~(2+)、Er~(3+)共掺样品的荧光寿命则有所缩短。  相似文献   

6.
采用高温固相法合成了一种新型近红外发光材料Mg_(2-x)SnO_4∶xCr~(3+)。利用X射线粉末衍射仪对样品的结构进行了表征,证明所得到的荧光粉具有单一尖晶石结构,掺杂离子的加入并没有改变晶体结构。利用荧光光谱和荧光衰减光谱对荧光粉的发光性质进行了研究。当被470 nm的蓝光激发时,荧光粉在700 nm处出现一个尖锐的发射峰(R锐线)和中心发射在750 nm处的宽带发射峰,分别归属于Cr~(3+)的~2E→~4A_2和~4T_2(~4F)→~4A_2跃迁。研究不同浓度Cr~(3+)掺杂对样品发光性质的影响,发现样品的发光强度随着Cr~(3+)浓度的增加而增大。当Cr~(3+)掺杂浓度x=0.02时达到最大值,之后出现发光强度的猝灭,猝灭机理为多极相互作用。样品的荧光寿命随着Cr~(3+)掺杂浓度的增大逐渐减小,从而证明Cr~(3+)之间存在着能量传递现象。Mg_(2-x)SnO_4∶xCr~(3+)系列荧光粉还表现出了近红外长余辉发光性质。  相似文献   

7.
采用传统固相法在1100℃合成了SrGe_(4-x)O 9∶x Mn^(4+)(SGOM)系列荧光粉,通过Ba^(2+)取代Sr 2+调制了荧光粉基质的局部结构,对样品的晶体结构、发光性质和热稳定性进行了探讨。XRD测试结果表明,Mn^(4+)和Ba^(2+)均成功地掺杂进入基质SrGe_(4)O_(9)晶格,没有其他物相产生。在275 nm紫外光激发下,SGOM荧光粉的发射光谱是位于600~750 nm的深红色谱带,峰值波长位于660 nm,主要源于Mn 4+离子^(2)E g→^(4)A _(2g)能级跃迁的窄带发射,优化的Mn^(4+)浓度为0.015。利用Ba^(2+)离子对SrGe _(3.985) O _(9)∶0.015Mn^(4+)荧光粉的发光性质进行调控,发现随着Ba^(2+)浓度增大,发射光谱的强度先上升后下降,最佳Ba^(2+)浓度为0.4。Ba^(2+)离子的引入造成基质结构中Sr1O10多面体产生局部扩张,导致样品的发射光谱展宽。为了解决封装白光LED中有机材料存在的难以承受发热的问题,制备出了基于SrGe _(3.985) O _(9)∶0.015Mn^(4+)荧光粉的荧光玻璃。优良的发光性质和热稳定性使SGOM荧光粉具备了应用于白光LED器件的前景。  相似文献   

8.
用高温固相法制备了Lu_2O_3∶x Pr~(3+)与Lu_2O_3∶0.1%Pr~(3+),y M(M=Li~+,Na~+,K~+,Ca~(2+),Ba~(2+))荧光粉。用XRD对其结构进行表征,测量了激发光谱、发射光谱和发光衰减曲线,分析了金属离子Li~+、Na~+、K~+、Ca~(2+)、Ba~(2+)掺杂对Lu_2O_3∶Pr~(3+)样品发光强度及荧光寿命的影响。结果显示:掺杂金属离子后的样品仍为纯Lu_2O_3立方晶相结构;与Lu_2O_3∶0.1%Pr~3样品在632 nm处的发光强度比较,分别掺杂12%的Li~+、8%的Na~+、8%的K~+获得样品的发光强度提高了7.32,4.11,2.55倍,掺杂了Ca~(2+)和Ba~(2+)的样品发光强度均减弱;与Lu_2O_3∶0.1%Pr~(3+)样品荧光寿命比较,掺杂Li~+、Na~+、K~+、Ca~(2+)、Ba~(2+)获得的样品~1D_2能级荧光寿命均缩短。  相似文献   

9.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

10.
采用高温固相法制备了金属离子Bi~(3+)掺杂Lu_(1-x)O_3:x%Ho~(3+)系列荧光粉,研究了不同浓度Bi~(3+)掺杂Lu_(1-x)O_3:x%Ho~(3+)荧光粉的晶体结构、Lu_2O_3基质中Bi~(3+)→Ho~(3+)的能量传递规律及合成粉体的发光性质。X射线衍射结果表明Bi~(3+)、Ho~(3+)掺杂对Lu_2O_3的立方相结构没有影响。在322 nm激发波长下发射出位于551 nm处Ho~(3+)的~5S_2→~5I_8跃迁;在551 nm监测下,合成的Ho~(3+)、Bi~(3+)共掺杂Lu_2O_3荧光粉出现Bi~(3+)的322 nm特征激发峰以及Ho~(3+)的448 nm处的~5I_8→~5F_1跃迁。当Bi~(3+)掺杂浓度为1.5%时,Bi~(3+)对Ho~(3+)的能量传递最有效,比单掺Ho~(3+)样品发射强度提高了34.8倍。Lu_(98.5%-y)O_3:1.5%Ho~(3+),y%Bi~(3+)(y=1,1.5,2)样品,随着Bi~(3+)掺杂浓度增加,用980 nm激发比322 nm激发在551 nm处获得的光强分别提高了13.3倍、16.8倍、14.2倍。通过计算得到Bi~(3+)和Ho~(3+)之间的能量传递临界距离为2.979 nm,且Bi~(3+)与Ho~(3+)之间的能量传递是通过偶极-四极相互作用实现的。  相似文献   

11.
罗洋  江建青  侯得健  游维雄  叶信宇 《发光学报》2015,36(12):1402-1408
采用简便的共沉淀法制备了不同Mn4+ 掺杂摩尔分数的Na2TiF6:Mn4+ 红色荧光粉。通过X射线衍射仪、扫描电子显微镜、红外光谱仪、荧光光谱仪对荧光粉的结构、形貌、傅立叶红外光谱、激发和发射光谱及荧光寿命曲线进行了表征。结果表明,Mn4+的掺杂没有改变Na2TiF6的晶格结构,样品具有六方结构。Mn4+最佳掺杂摩尔分数为4.77%,量子效率为74%。在460 nm激发下,最强窄带发射峰位于628 nm处(2Eg-4A2),色坐标为(0.681,0.317)。2Eg能级的荧光寿命曲线遵循双指数衰减,其荧光寿命值为3.148 ms。  相似文献   

12.
熊晓波  刘万里  袁曦明  刘金存  宋江齐  梁玉军 《物理学报》2015,64(24):247801-247801
采用高温固相法制备了SrZn2(PO4)2:Sn2+(SZ2P:Sn2+), SrZn2(PO4)2:Mn2+(SZ2P:Mn2+), SrZn2 (PO4)2:Sn2+, Mn2+(SZ2P:Sn2+, Mn2+) 荧光粉. 通过X射线衍射、激发和发射光谱详细研究了荧光粉的物相和发光性质. 在SrZn2(PO4)2 基质中, Sn2+离子发射光谱是峰值位于461 nm宽带谱, 归属于Sn2+离子的3P11S0能级跃迁, SZ2P:Mn2+激发光谱由基质吸收带(200–300 nm)和位于352, 373, 419, 431和466 nm的一系列激发峰组成, 分别对应Mn2+离子的6A1(6S)→4E(4D), 6A1(6S)→4T2(4D), 6A1(6S)→[4A1(4G), 4E(4G)], 6A1(6S)→4T2(4G)和6A1(6S)→4T1(4G)能级跃迁, 因此, SZ2P:Sn2+ 的发射光谱与SZ2P:Mn2+的激发光谱有较大范围的重叠. 结果表明Sn2+对Mn2+发光有明显的敏化作用. 基于Dexter电多极相互作用能量传递公式和Reisfeld近似原理分析, 荧光粉SZ2P:Sn2+, Mn2+中Sn2+-Mn2+离子之间的能量传递机理属于电四极-电四极相互作用引起的共振能量传递, 并计算出Sn2+-Mn2+离子之间能量传递临界距离Rc ≈ 1.78 nm. 通过改变Sn2+, Mn2+离子掺杂浓度, 实现了荧光粉发光颜色的调节, 在254 nm短波紫外激发下荧光粉发出较强的蓝白光. 研究结果表明SZ2P:Sn2+, Mn2+荧光粉有望应用于紧凑型节能灯照明领域, 随着半导体紫外芯片技术的发展, 有潜力应用于未来的白光发光二极管照明领域.  相似文献   

13.
利用高温固相法制备了Ba9Y2(SiO4)6:Ce3+,Mn2+(BYS:Ce3+,Mn2+)荧光粉,并通过X射线衍射(XRD)谱、激发和发射光谱及荧光寿命的测试对材料的结构、发光特性和能量传递进行了研究。在327 nm激发下,BYS:Ce3+,Mn2+发射光谱中包含2个发射峰,分别为位于407 nm的Ce3+的蓝紫光发射和位于597 nm的Mn2+的红光发射。在该体系中,发现了Ce3+向Mn2+的有效能量传递,使得Mn2+在597 nm处的红光发射显著提高,当x(Mn2+)=0.25时,BYS:Ce3+,xMn2+的能量传递效率可达39%。实验表明,该荧光粉可为紫外基白光LED提供良好的红光光源。  相似文献   

14.
红色长余辉材料Mg2SiO4:Dy3+,Mn2+的制备及发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
林林  尹民  施朝淑  张慰萍  徐美 《发光学报》2006,27(3):331-336
用高温固相法制备了长余辉发光材料Mg2SiO4:Dy3+,Mn2+,对这种材料的红色长余辉性质进行了研究.对以不同掺杂浓度单掺杂Mn2+、单掺杂Dy3+以及双掺杂Dy3+,Mn2+的Mg2SiO4体系,通过在紫外激发下的发射光谱及其激发光谱的研究,确认了在双掺杂体系中,峰值为660nm的发光带对应着Mn2+4T1(4G)→6A1(6S)跃迁,Mn2+为主要发光中心.Mn2+的660nm发射的激发谱分布很宽,样品在近紫外和可见光区都有良好的吸收,长波边可达600nm,是这种材料的一个显著优点.还研究了双掺杂体系中Dy3+对Mn2+的660nm发光带的敏化作用.另外,通过对单掺杂、双掺杂体系热释光曲线的比较,揭示了双掺杂体系中Dy3+的陷阱作用.  相似文献   

15.
用高温固相反应法合成了Ba2SiO4:xCe3+,yMn2+(x=0~0.2, y=0~0.15)荧光粉,研究了荧光粉的晶体结构和发光性质。在紫外光激发下,Ba2SiO4:xCe3+的发射光谱为位于384 nm附近的宽带。Ba2SiO4:Mn2+样品的发射光谱位于376 nm的宽带较强,红光发射极弱。在Ce3+和Mn2+共掺的Ba2SiO4:xCe3+,yMn2+样品中,位于606 nm附近的红光发射较强,来源于Mn2+4T1(4G)-6A1(6S)跃迁。这说明Ce3+离子将部分能量传递给了Mn2+离子,有效地敏化了Mn2+离子的发光。当Ce3+的摩尔分数为0.2、Mn2+的摩尔分数为0.075时,Ba2SiO4:xCe3+,yMn2+荧光粉位于606 nm的Mn2+的发射峰最强。  相似文献   

16.
于潘龙  田莲花 《发光学报》2018,39(9):1200-1206
采用高温固相法制备了颜色可调的NaTaOGeO4∶Tb3+,Mn2+荧光粉,并研究了其发光特性以及能量传递机理。在244 nm激发下,NaTaOGeO4∶Tb3+的发射光谱的发射峰分别位于380,413,436,492,544 nm,分别属于Tb3+5D37FJ5D47FJ(J=6,5,4)能级跃迁,为蓝光和绿光发射。在280 nm波长激发下,在492 nm和544 nm处有较强的发射峰,分别属于Tb3+5D47F65D47F5能级跃迁,为绿光发射。在248 nm波长激发下,NaTaOGeO4∶Mn2+的发射光谱由位于576 nm处的宽带组成,属于Mn2+4T16A1能级跃迁。当在NaTaOGeO4∶Tb3+荧光粉中共掺杂Mn2+时,可以同时观察到Mn2+和Tb3+的发射峰,通过改变浓度掺杂比,可以得到颜色可调控的荧光粉。  相似文献   

17.
SrB4O7:Pr3+,Mn2+中的Pr→Mn能量传递   总被引:1,自引:0,他引:1       下载免费PDF全文
从能量传递的角度出发,利用同步辐射光源(德国HASYLAB实验室的SUPERLUMI实验站)对Pr3+和Mn2+掺杂的SrB4O7粉末样品进行了光谱研究.206nm激发下,在SrB4O7:Pr3+(0.1%,摩尔分数)样品中观察到了来自Pr3+离子1S0能级的光子级联发射.SrB4O7:Pr3+样品的发射谱与SrB4O7:Mn2+样品监测Mn2+离子640nm发射的激发谱在330~430nm的波长范围里存在显著的光谱重叠.这个光谱重叠有利于Pr3+→Mn2+的能量传递发生,从而将Pr3+离子级联发射中第一步不实用的紫外或近紫外光子转换为Mn2+的红光发射.双掺杂样品SrB4O7:Pr3+,Mn2+与单掺杂样品SrB4O7:Pr3+的发射谱比较揭示出Pr3+→Mn2+的能量传递的确存在,并且提供了一种传递效率的估算方法,表明通过“Pr3+-Mn2+”组合有可能获得量子效率大于1的高效真空紫外激发发光材料.  相似文献   

18.
采用固相烧结法制备了Zri_(1-x)Al_(2-x)V_(2-x)Mo_xO_7(0≤x≤0.9),并通过调整Al~(3+)/Mo~(6+)对ZrV_2O_7中的Zr~(4+)/V~(5+)离子替代量来实现近零膨胀,对于较小的x值(x≤0.3),材料保持了与ZrV_2O_7相同的立方相结构.随着Al~(3+)/Mo~(6+)替代量的增加,(Al/Zr)~-和(Mo/V)~+之间的库仑相互作用逐渐加强,这种库仑相互作用导致材料中未发生畸变的立方相晶体结构逐渐减少.当x≥0.7时,材料中立方相晶体结构完全消失.在425-750 K温度区间内,Zr_(0.5)Al_(0.5)M_(0.6)O_7展示出近零膨胀性质(-0.39×l0~(-6)K~(-1)).Zr_(0.5)Al_(1.5)V_(1.5)Mo_(0.5)O_7的低热膨胀性能可能与Al~(3+)/Mo~(6+)对ZrV_2O_7中Zr~(4+)/V~(5+)部分替代引起部分晶体结构发生的畸变及其对未替代部分的晶格结构的影响有关.  相似文献   

19.
利用高温固相法成功制备了Er~(3+)单掺、Er~(3+)/Yb~(3+)共掺杂Ca_(12)Al_(14)O_(32)F_2上转换发光样品。在980 nm激光激发下,Er~(3+)单掺和Er~(3+)/Yb~(3+)共掺杂样品均呈现出较强的绿光(528,549 nm)和较弱的红光(655 nm)发射,分别归因于Er~(3+)离子的~2H_(11/2),~4S_(3/2)→~4I_(15/2)和~4F_(9/2)→~4I_(15/2)能级跃迁。随着Er离子浓度的增加,单掺杂样品上转换发光强度先增大后减小,最佳掺杂浓度为0.8%。共掺杂Yb~(3+)后,Er~(3+)的发光强度明显增大。还原气氛下合成的样品上转换发光强度增大约两倍,可能和笼中阴离子基团变化有关。发光强度和激发光功率的关系表明所得上转换发射为双光子吸收过程,借助Er~(3+)-Yb~(3+)体系能级结构详细讨论了上转换发射的跃迁机制。  相似文献   

20.
采用高温固相反应法合成了Zn_2GeO_4∶xMn~(2+)系列绿色长余辉磷光粉。XRD分析结果表明,掺锰磷光粉的主要衍射峰位与锗酸锌晶体标准卡基本一致,但略有红移。SEM照片显示,相对于Zn_2GeO_4基质平均粒径而言,掺锰磷光粉的颗粒尺寸均增大。在325 nm紫外光激发下,Zn_2GeO_4∶Mn~(2+)发射出强的530 nm绿光,优化掺锰离子浓度为0.5%。同时发现Zn_2GeO_4∶0.2Mn~(2+)磷光粉暗场条件下的余辉时间超过180 min,详细讨论了Zn_2GeO_4∶Mn~(2+)长余辉发光的内在机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号