首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
飞机机体表面的开孔设计会形成空腔结构,产生空腔流致噪声。空腔噪声的控制需要彻底认识其流动和噪声机理。以飞机的功能性开孔为例,通过半经验公式分析了其空腔噪声频率随速度的变化规律,预测了出现流声共振的工况。空腔发生流声共振时,特定频率的纯音噪声会被放大。为此,采用脱体涡模拟方法开展了开孔结构流声共振的三维非定常数值计算,分析了其流场和声场特性。其中,数值方法的准确性通过圆形空腔标模计算进行验证。结果表明,在一定速度下剪切层内的扰动将诱发空腔深度方向声模态,出现流声共振现象。此时,剪切层表现为强烈的周期性上下拍动,空腔底部和后缘区域的局部压力脉动幅值较大,声波主要由空腔后缘向上游方向辐射,上游噪声大于下游。  相似文献   

2.
The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.  相似文献   

3.
矩形腔体流场模拟及噪声研究   总被引:1,自引:0,他引:1  
用大涡模拟方法对低速湍流引起的矩形腔体内流动进行了模拟,并应用FW-H声学类比方程分析了由流动诱发的气动噪声.数值模拟观察到了涡结构的脱体及腔体内部的自激振荡过程,通过分析得出了由流动诱发噪声的声压-频率曲线.研究发现在流速30 m/s时,流动噪声声压级在60 dB以下,348.48 Hz及其高次谐波是噪声的主要来源,流场与声场表现出耦合关系,辐射声场具有明显的方向性.腔体噪声的风洞实验研究得到了与数值模拟吻合的结果.  相似文献   

4.
This paper deals with the global reduction of axial flow fan noise in ducts in a building using a hybrid passive-active noise control method. The effectiveness of using an infra-red device as a reference signal source is also investigated. It is shown that using such a hybrid noise control system over an axial-flow fan reduces the overall sound pressure level by 5 dB(A) in the surrounding environment and global control of the blade passing frequency can also be achieved. This paper also shows that using an infra-red device as a reference signal source produces marginally better control as compared with using a microphone reference sensor. Moreover, long term stability is guaranteed and the possibility of acoustic feedback is eliminated.  相似文献   

5.
车辆天窗气动噪声的数值分析与实验研究   总被引:1,自引:0,他引:1  
本文从汽车天窗气动噪声的机理入手,利用与实车几何尺寸为1:5的简化模型进行了空腔绕流的数值计算,分析了其流场结构及气动噪声产生的原因.在低速静音风洞中进行了不同流速下的流场和声场实验研究,研究了天窗不同位置的速度剪切层变化,以及不同流速下的声压级变化,发现了除了特征频率下的风振噪声,还存在较大频率范围的气动噪声,其随着...  相似文献   

6.
Grazing flows over Helmholtz resonators may result in self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the cavity system. The associated pressure fluctuations may be undesirable. Many solutions have been proposed to solve this problem including, for example, leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive”, i.e., they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In the present study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel. A microphone located within the cavity was used as the feedback sensor. A loop shaping feedback control design methodology was used in order to ensure robust controller performance over varying flow conditions. Cavity pressure level attenuation of up to 20dB was achieved around the critical velocity (i.e., the velocity for which the fundamental excitation frequency matches the Helmholtz resonance frequency of the cavity), relative to the level in the presence of the spoiler held stationary. The required actuation effort was small. The spoiler peak displacement was typically only 4% of the mean spoiler angle (approximately 1′). The control scheme was found to provide robust performance for transient operating conditions. Oscillated leading edge spoilers offer potential advantages over loudspeakers for cavity resonance control, including a reduced encumbrance (especially for low-frequency applications), and a reduced actuation effort.  相似文献   

7.
Flow over an open side window in a car exhibits similar characteristics as the flow over an open cavity. Computational Fluid Dynamics (CFD) simulation over a cavity was done as a benchmark. The unsteady flow simulation was carried out using Scale Adaptive Simulation (SAS) turbulence model. The benchmark results, frequency and sound pressure levels of feedback and resonance modes, all well matched with the experimental data. Then, with the right rear window, for example, the mechanism of the side window buffeting was investigated. The simulation results show that side window buffeting noise is generated by large scale vortices and in low frequency. Furthermore, buffeting noise characteristics under several patterns of side windows opening were also numerically investigated. As a result, rear window buffeting noise is more severe than that of front window when one window open, and combination pattern of side windows open can reduce buffeting noise. To decrease the interior noise and improve car ride comfort, four suppression measures through adding a side window weather deflector at the A-pillars, constructing a cavity at the B-pillars, combination of the front and rear windows and installing a row of square cylinder deflector at the B-pillars were also studied, respectively. In conclusion, certain noise reduction can be achieved through four passive control methods.  相似文献   

8.
A new type of acoustic liner developed for broadband noise reduction in flow ducts is considered in this paper. It combines passive absorbent properties of a porous layer and active control at its rear face. The complete design procedure of this hybrid passive/active liner is developed here. The passive part is first considered with the determination of a suitable porous material and the cut-off frequency separating the active low frequency regime from the passive high frequency one. The control system is then presented: a digital adaptive feedback control is performed independently cell by cell, allowing an easy subsequent increase of the liner surface. The entire optimization process has been successfully applied to a laboratory flow duct: both predictions and measurements show the interest of the hybrid liner to reduce the noise radiation.  相似文献   

9.
This paper compares various decentralised control strategies, including structural and acoustic actuator–sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural–acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.  相似文献   

10.
A general comparison is made between two methods of measuring the gravitational constant G. The angular acceleration method can avoid the anelasticity effect since the torsion fiber is not twisted. The dynamic deflection method is similar in principle but it does not use feedback, therefore a major noise introduced by the feedback control system in the angular acceleration method can be avoided. Both methods have their advantages and can be performed with the same device. Based on different expressions of G, we have expressed the signal-to-noise ratio and calculated the thermal noise limit for both methods. In order to get a lower thermal noise limit, the dynamic deflection method should avoid resonance.  相似文献   

11.
The identification of tyre induced vehicle interior noise   总被引:2,自引:0,他引:2  
Sound transmission into a vehicle is classified as either airborne or structure borne sound. From the point view of noise control, the reduction of noise transferred by different paths requires different solutions. Coherence function analysis is often used to identify transmission paths. However it can be difficult to separate the airborne from structure borne components. The principle of acoustic reciprocity offers a convenient method for overcoming this difficulty. The principal states that the transfer function between an acoustic volume velocity source and an acoustic receiver is independent of a reversal of the position of source and receiver. The work done on this study involves exciting a stationary tyre and measuring the surface velocity of the tyre at a number of discrete points. The acoustic transfer functions between each point on the tyre and a receiver point are measured reciprocally. Two sets of measurements are then combined to yield a measure of the sound pressure due to a point force on the tyre via the acoustic transmission path only. This technique also provides information on the relative contributions of various regions of the tyre wall to the resultant noise. Also the sound radiation characteristics, the horn effect, and resonance at the wheel housing are identified through the reciprocal measurement.  相似文献   

12.
抑制光束抖动的压电倾斜镜高带宽控制   总被引:2,自引:0,他引:2       下载免费PDF全文
凡木文  黄林海  李梅  饶长辉 《物理学报》2016,65(2):24209-024209
提出了一种抑制光束平台抖动和压电倾斜镜机械谐振的方法从而提高系统校正带宽和跟瞄精度.通过分析双二阶滤波器参数对频率特性的影响,提出了一种双二阶滤波器的设计方法,并把这种设计方法结合比例积分(PI)控制算法用于抑制光束平台抖动和压电倾斜镜机械谐振.最后,对经典PI控制算法和增加了双二阶滤波器的PI控制算法进行了实验比较,在相同的条件下,增加了双二阶滤波器的PI控制带宽比经典PI控制带宽提高了近1倍,对平台抖动控制精度提高了5倍以上.实验结果表明:增加了双二阶滤波器的PI控制算法对抑制光束平台抖动和压电倾斜镜机械谐振简单有效,可以提高系统校正带宽和跟瞄精度.  相似文献   

13.
Passive noise control devices for jet flows, such as chevron nozzles, have been studied for a long time due to their large application in turbofan engines. The main purpose of their usage is the reduction of low-frequency noise generation and thus decreasing the noise perceived at the far field. This work is a numerical study of acoustic noise generated by jet flow operating at Mach number 0.9 and Reynolds number 1.38 × 106, considering two chevron nozzle geometries that differ from each other by the penetration angle into the flow. The main aim was to demonstrate that Reynolds averaged Navier Stokes (RANS)-based methods are reliable means to obtain acoustical noise predictions for the industry with a considerably low computational cost. In order to achieve this objective, computational fluid dynamics (CFD) RANS simulations were performed with a cubic k-ɛ model and the acoustic noise spectrum for different angles of radiation was obtained via the Lighthill ray-tracing (LRT) method. The numerical results for the acoustic and flow fields were seen to be in reasonable agreement with the experimental data, suggesting that this methodology can be used as a fast and useful option to predict acoustic noise of jet flows from chevron nozzles.  相似文献   

14.
水流流经腔体时引起的自激振荡会形成流激噪声,该文通过仿真和实验研究了水下流激孔腔噪声的主动声场控制。应用有源前馈控制方法,对比了参考信号的选取以及控制器中增加的泄露因子对控制结果的影响,并在水循环管路中对流激孔腔噪声前馈控制效果进行了实验验证。研究结果表明,前馈有源噪声控制方法可有效抑制水下流激孔腔噪声,在误差点和辅助观测点都取得了良好的降噪效果,最大降噪量大于8 dB,并且使用腔内信号作为参考的控制效果优于上游信号作为参考。  相似文献   

15.
In this study, sound propagation through a circular duct with non-locally lining is investigated both numerically and experimentally. The liner concept is based on perforated screens backed by air cavities. Dimensions of the cavity are chosen to be of the order or bigger than the wavelength so acoustic waves within the liner can propagate parallel to the duct surface. This gives rise to complex scattering mechanisms among duct modes which renders the muffler more effective over a broader frequency range. This work emanates from the Cleansky European HEXENOR project which aim is to identify the best multi-cavity muffler configuration for reduction of exhaust noise from helicopter turboshaft engines. Here, design parameters are the cavity dimensions in both longitudinal and azimuthal directions. The best cavity configuration must in addition fit weight specifications which implies that the number of walls separating each cavity should be chosen as small as possible. To achieve these objectives, the scattering matrix of the lined duct section is obtained experimentally for two specific muffler configurations operating in multimodal propagation conditions. The good agreement with numerical predictions serves to validate the perforate plate impedance model used in our calculation. Finally, given an incident acoustic pressure which is representative of typical combustion noise spectrum, the best cavity configuration achieving the maximum overall acoustic Transmission Loss is selected numerically. The study also illustrates how the acoustic performances are dependent on the nature of the incident field.  相似文献   

16.
By the acoustic holography method, it was found that there were multiple nearby noise sources, which are hard to be rejected by using the conventional beamforming technique. Instead of the conventional beamforming, we propose a new adaptive beamforming method to suppress nearby generated flow noise by using sonar sub-arrays.  相似文献   

17.
主动噪声控制声学通道的实验辨识   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的自适应滤波器不能直接用于主动噪声控制,因为扬声器和误差传声器之间的声学通道可能使系统不稳定。本文根据声学通道的相应特性,建立补偿滤波器,提出了用实验方法辨识声学通道传输特性。在房间实验中研究了单通道相位因子的变化特性,并进一步用于飞机人多通道主动噪声控制,给出了相应的实验结果。  相似文献   

18.
Optimal design of acoustic performance for automotive air-cleaner   总被引:1,自引:0,他引:1  
The research on optimal design of acoustic performance for air-cleaner was presented and evaluated in this paper using a numerical simulation method and experimental method. A modified measurement was proposed in the paper to solve the problem of air flow noise caused by the original measurement layout. The modified measurement was proved to produce good results. A new study on the acoustic effect of filter was also developed here and noise reduction (NR) of the air-cleaner was predicted based on the study using the numerical simulation method. Actual intake noise was then predicted using the simulation method. Side branch silencers were designed to improve the acoustic capacity of the air-cleaner. The result shows that the newly optimized air-cleaner has a much better performance of noise elimination when engine operating.  相似文献   

19.
徐志坚  张心光  王岩松  刘宁宁 《应用声学》2017,25(12):57-59, 67
摘要:降低汽车空腔的振动,是抑制汽车车内噪声的有效途径之一。以激振器、作动器和控制器等为主要部件,搭建了简化的汽车车内噪声主动控制系统,该系统通过将汽车空腔模型简化为板件,以减弱板件振动为目标,实现了汽车车内噪声主动控制。采用简谐正弦及余弦信号作为激振器发出的激励,用于模拟板件的初始振动,控制器通过采用模糊控制算法直接控制压电陶瓷作动器的振动,压电陶瓷作动器的振动用于抑制板件的振动,完成了汽车车内噪声主动控制系统仿真。仿真结果表明,研究采用的汽车车内噪声主动控制系统,使汽车空腔振动降低23%,为解决由汽车发动机和动力总成的振动所引发的汽车车内噪声问题提供了一个有效途径。  相似文献   

20.
Launch vehicle noise is broadband in nature and the noise transmitted into the payload fairing is reduced by treating its interior with an acoustic absorption layer. The latest generation payload fairings are made from composite material which offer poor noise attenuation at low frequencies. One possible solution for reducing the low frequency noise is to use Helmholtz resonators tuned to a few of the dominant low frequency components, such as shell ring frequency or the first few cavity modes of the fairing. The paper presents a simplified modelling approach for numerical simulation of a coupled cavity–resonator system which is validated by experiments. The influence of damping and resonator volume fraction on the coupled system performance, to suppress the first axial mode in a cylindrical cavity, is shown and the resonator volume fraction required for significantly (more than 5 dB) suppressing the cavity axial mode is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号