首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the proposed fast frequency selective MR imaging (FFSMRI) method, we focused on the elimination of all off-resonance components from the image of the observed object. To maintain imaging speed and simultaneously achieve good frequency selectivity, MRI was divided into two steps: signal acquisition and postprocessing. After the preliminary phase in which we determine imaging parameters, MRI takes place; the signal from the same object is successively acquired M times. As a result, we obtain M partial signals in k-space, from which we calculate the image of the observed object in postprocessing phase, after signal acquisition has been completed. With proper selection of parameters, it is possible to exclude from the image a majority of off-resonance components present in the observed object. However, we can decide to keep only a chosen off-resonance component in the image and eliminate all other components, including the on-resonance component and thus producing a different image from the same acquisition. The experiments with Fe(OH)(3) and oil showed that signal-to-noise ratio (SNR) can be improved by about a factor of four. The proposed FFSMRI method is suitable for frequency selective MR imaging and quantitative measurements in dynamic MRI where exclusion of off-resonance components can improve the reliability of measurement.  相似文献   

2.
在临床用MRI系统上对小动物扩散加权成像一般采用回波平面成像序列,但是回波平面成像易受偏共振效应的影响,得到的图像伪影大、几何变形严重、图像分辨率低,无法探究微小的生物组织结构. 该文报道了在临床用3 T MRI系统上采用自旋回波序列实现了高分辨扩散加权成像. 为减少运动伪影,序列中整合了导航回波矫正技术. 对脑缺血模型大鼠脑部的扫描结果显示,自旋回波扩散加权序列获得的图像基本没有发生形变,并且具有较高的分辨率和较好的信噪比.  相似文献   

3.
磁振灌流造影:对“流动敏感交互反转恢复”的评论(英文)   总被引:1,自引:1,他引:0  
萧庭毅  张程 《波谱学杂志》2010,27(3):289-297
磁振造影在过去的数十年內取得了长足的进步,除了可提供生物解剖构造的资讯外,如今更可以进行组织灌流造影.磁振灌流造影主要可分成2种:动态磁感对比(Dynamic susceptibility Contrast)和动脉标记(Arterial Spin Labeling) .相较于动态磁感对比,动脉标记能非侵入性地观测灌流.动脉标记包括了数种技术:如CASL (continu-ous arterial spinlabeling) ,EPISTAR(echo planar imaging and signal targeting with al-ternating radiofrequency) ,PICORE(proxi mal inversion with a control for off-resonance effects)和FAIR(flow-sensitive alternating inversion recovery) .该文主要提供流动磁感交互反转恢复(FAIR)技术的综合介绍,包括其理论基础和实践,特别针对T1法在FAIR定量上的使用.定量上的困难亦将会在文章中被讨论.文章的最后总结FAIR之实际应用情形.  相似文献   

4.
Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8–298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image resolutions. On the other hand, MRI is possible also at ultra-low magnetic fields, as was shown by different groups. The goal of our development was to reach a Larmor frequency range of the low-field MRI system corresponding to the frequency range of human brain activities ranging from near zero-frequency (near-DC) to over 1 kHz. Here, first 2D MRI images of phantoms taken at Larmor frequencies of 100 Hz and 731 Hz will be shown and discussed. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve. The method will allow the magnetic fields of the brain currents to influence the magnetic resonance image, and thus lead to a direct functional imaging modality of neuronal currents.  相似文献   

5.
磁共振扩散张量成像(DTI)是在扩散加权成像(DWI)基础上发展起来的一种新型技术,可以无创伤显示脑白质纤维,诊断脑白质病变. 但是由于各种原因,DTI一般只在超导高场磁共振成像(MRI)仪器上进行,这就限制了这一重要诊断手段临床应用的广泛性. 本文在低场磁共振成像系统上应用线扫描实现了扩散张量成像,并测量了健康志愿者大脑内主要解剖结构的表观扩散系数(ADC)和各项异性分数(FA),得到的数据与高场仪器上的相关数据比较是吻合的. 因此临床上使用在低场强上得到的DTI图像评价脑白质是可行的,而且通常在临床上这也是足够的.  相似文献   

6.
在临床磁共振成像(MRI)应用中,射频线圈的设计是非常关键的,针对不同的应用目的,合适的线圈能获得质量更好的图像. 有的应用需要线圈提供均匀性较好的射频场,而有的应用则需要线圈在特定区域内提供高的信噪比(SNR). 但是线圈很难同时得到好的射频场(B1场)、空间均匀性和高的SNR,需要根据实际应用情况进行折衷设计. 针对MRI在脑外科手术中的应用特点,设计并制作了一种新颖的、适用于脑外科手术的MRI接收和发射共用射频线圈. 该线圈采用可分拆式结构,在脑外科手术支架上可以进行反复组装和拆卸,减少了MRI对医生手术的影响. 仿真结果和人体成像实验表明,该线圈能产生均匀的射频场、有较高的SNR和较大的成像范围,满足脑外科手术的需要.  相似文献   

7.
介绍了在Bruker Biospec 47/30 超导核磁共振成象仪(4.7 T)上实现Spiral快速成像及图像处理系统. 图像处理系统基于PC技术构建而成,主要功能包括:1) 将以Spiral形式采集到的时域磁共振信号转化为适用于快速傅立叶变换的笛卡尔网格(Cartesian)形式(网格化处理);2)二维快速傅立叶变换(2D-FFT,图像重建);3)由化学位移偏置或磁场不均匀引起得偏共振效应(off-resonance effect)的校正;4)图像分析. 该软件适用于包括以多片多回波在内的各种采样方式得到的Spiral图像的重建和分析,也适用于常规成像数据的重建和分析. 所得到的图像可以以数据方式保存以供再次读入,也能够以TIF、GIF、JPG、BM等格式辅出为图像文件.  相似文献   

8.
Parallel MRI at microtesla fields   总被引:2,自引:2,他引:0  
Parallel imaging techniques have been widely used in high-field magnetic resonance imaging (MRI). Multiple receiver coils have been shown to improve image quality and allow accelerated image acquisition. Magnetic resonance imaging at ultra-low fields (ULF MRI) is a new imaging approach that uses SQUID (superconducting quantum interference device) sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at microtesla-range measurement fields. In this work, parallel imaging at microtesla fields is systematically studied for the first time. A seven-channel SQUID system, designed for both ULF MRI and magnetoencephalography (MEG), is used to acquire 3D images of a human hand, as well as 2D images of a large water phantom. The imaging is performed at 46 mu T measurement field with pre-polarization at 40 mT. It is shown how the use of seven channels increases imaging field of view and improves signal-to-noise ratio for the hand images. A simple procedure for approximate correction of concomitant gradient artifacts is described. Noise propagation is analyzed experimentally, and the main source of correlated noise is identified. Accelerated imaging based on one-dimensional undersampling and 1D SENSE (sensitivity encoding) image reconstruction is studied in the case of the 2D phantom. Actual threefold imaging acceleration in comparison to single-average fully encoded Fourier imaging is demonstrated. These results show that parallel imaging methods are efficient in ULF MRI, and that imaging performance of SQUID-based instruments improves substantially as the number of channels is increased.  相似文献   

9.
Forty-two patients with clinically suspected osteomyelitis were examined using magnetic resonance imaging (MRI). Twenty-seven patients (64%) had previous surgery or fracture, and 15 (36%) were referred for differentiation of acute osteomyelitis from bone tumors or other pathologic conditions. MRI was compared with computed tomography in 12 cases and with 111In-labeled leukocytes scans in 22. With MRI, 92% of proved infections were detected, and bone and soft-tissue changes were more evident than with routine radiographs, tomography, or computed tomography. In patients with negative cultures and no previous surgery or fracture, it was difficult for MRI to differentiate operative changes from infection. In these patients, 111In-labeled leukocyte images were more specific than MRI.  相似文献   

10.
The partial separability (PS) of spatiotemporal signals has been exploited to accelerate dynamic cardiac MRI by sampling two datasets (training and imaging datasets) without breath-holding or ECG triggering. According to the theory of partially separable functions, the wider the range of spatial frequency components covered by the training dataset, the more accurate the temporal constraint imposed by the PS model. Therefore, it is necessary to develop a new sampling scheme for the PS model in order to cover a wider range of spatial frequency components. In this paper, we propose the use of radial sampling trajectories for collecting the training dataset and Cartesian sampling trajectories for collecting the imaging dataset. In vivo high resolution cardiac MRI experiments demonstrate that the proposed data sampling scheme can significantly improve the image quality. The image quality using the PS model with the proposed sampling scheme is comparable to that of a commercial method using retrospective cardiac gating and breath-holding. The success of this study demonstrates great potential for high-quality, high resolution dynamic cardiac MRI without ECG gating or breath-holding through use of the PS model and the novel data sampling scheme.  相似文献   

11.
The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.  相似文献   

12.
Within the last several years a number of technical developments have been made in magnetic resonance imaging (MRI) that can potentially impact clinical and research MR imaging applications in epilepsy. These include developments in instrumentation and in pulse sequences. Advances in instrumentation include higher capacity gradient systems and multiple receiver coils as directed to brain imaging. Advances in pulse sequence include use of fast or turbo-spin-echo techniques, variants of echo-planar imaging, and sequences such as fluid-attenuation inversion recovery (FLAIR) targeted to specific applications of brain imaging. The purpose of this paper is to review several of these developments.  相似文献   

13.
Magnetic resonance imaging (MRI) has become one of the most valuable modalities for initial and follow-up imaging of suspected or known neuroblastoma (NBL) owing to its excellent inherent contrast, lack of ionizing radiation and multiplanar imaging capability. Importantly, NBL has a variable appearance on different imaging modalities, and this is particularly pertinent to MRI. MRI is a cornerstone for management of NBL, providing essential information at initial presentation regarding diagnosis, staging, resectability and relation to vital structures. It can also define the extent of residual disease after surgical resection or assess the efficacy of treatment. Follow-up MRI is frequently performed to ensure sustained complete remission or to monitor known residual disease. This pictorial review article aims to provide the reader with a concise, yet comprehensive, collection of MR images of primary and metastatic NBL lesions with relevant correlation with other imaging modalities.  相似文献   

14.
Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneities including those caused by B0 inhomogeneities and chemical shift offsets. Utilizing the inherent robustness of SPEN, it was previously shown that RASER can be used to successfully perform functional MRI (fMRI) experiments in the orbitofrontal cortex — a task which is challenging using EPI due to strong magnetic susceptibility variation near the air-filled sinuses. Despite this superior performance, systematic analyses have shown that, in its initial implementation, the use of SPEN was penalized by lower signal-to-noise ratio (SNR) and higher radiofrequency power deposition as compared to EPI-based methods. A recently developed reconstruction algorithm based on super-resolution principles is able to alleviate both of these shortcomings; the use of this algorithm is hereby explored within an fMRI context. Specifically, a series of fMRI measurements on the human visual cortex confirmed that the super-resolution algorithm retains the statistical significance of the blood oxygenation level dependent (BOLD) response, while significantly reducing the power deposition associated with SPEN and restoring the SNR to levels that are comparable with those of EPI.  相似文献   

15.
化学交换饱和转移(Chemical Exchange Saturation Transfer,CEST)技术作为一种新型的磁共振成像(Magnetic Resonance Imaging,MRI)技术.它的原理为溶质池中被激发饱和的质子与游离水中未被饱和的质子间的化学交换,能够引起水质子磁共振信号的下降,从而获得组织内生物分子的相关信息.由于质子间的交换速率kex与组织微环境的pH值之间存在直接联系,因而可以通过溶质质子的CEST信号对活体组织进行pH成像.目前用于pH成像的溶质分子既包括内源性游离的蛋白质、多肽分子,还包括一系列的外源性小分子和金属螯合物.通过不同类型的比率法、内源性胺和酰胺浓度-独立检测(Amine and Amide Concentration-independent Detection,AACID)等成像方法,能够获得肾脏、中风脑组织以及肿瘤组织的pH图谱.本文详细总结了2000年以来利用CEST技术进行pH成像方面的研究进展,包括对比剂、成像方法和相关应用,展望了活体组织pH成像的发展趋势和应用前景.  相似文献   

16.
核磁共振成像现今已经成为临床神经影像的常规工具.在诊断、评估和监测中风从急性到慢性的各个阶段的脑组织的变化过程中,核磁共振成像扮演了一个重要的角色.该综述提供了多种核磁共振成像方法的描述,以及选择性地展示了作者在美国亨利福特医院神经科核磁共振成像实验室所获得的大白鼠栓塞中风模型的核磁共振成像研究成果.  相似文献   

17.
In pharmacological magnetic resonance imaging (phMRI) with anesthetized animals, there is usually only a single time window to observe the dynamic signal change to an acute drug administration since subsequent drug injections are likely to result in altered response properties (e.g., tolerance). Unlike the block-design experiments in which fMRI signal can be elicited with multiple repetitions of a task, these single-event experiments require stable baseline in order to reliably identify drug-induced signal changes. Such factors as subject motion, scanner instability and/or alterations in physiological conditions of the anesthetized animal could confound the baseline signal. The unique feature of such functional MRI (fMRI) studies necessitates a technique that is able to monitor MRI signal in a real-time fashion and to interactively control certain experimental procedures. In the present study, an approach for real-time MRI on a Bruker scanner is presented. The custom software runs on the console computer in parallel with the scanner imaging software, and no additional hardware is required. The utility of this technique is demonstrated in manganese-enhanced MRI (MEMRI) with acute cocaine challenge, in which temporary disruption of the blood-brain barrier (BBB) is a critical step for MEMRI experiments. With the aid of real-time MRI, we were able to assess the outcome of BBB disruption following bolus injection of hyperosmolar mannitol in a near real-time fashion prior to drug administration, improving experimental success rate. It is also shown that this technique can be applied to monitor baseline physiological conditions in conventional fMRI experiments using blood oxygenation level-dependent (BOLD) contrast, further demonstrating the versatility of this technique.  相似文献   

18.
谢海滨  邬学文 《物理》1998,27(12):721-725
核磁共振快速成像能在几十毫秒内获取数据,对运动器官作适时显示,并在功能成像的研究等方面具有常规成像不能替代的优点,是核磁共振成像的发展方向.螺旋快速成像对硬件的要求较低,近年来方法上的改善,已使其趋于实用.文章简要介绍了螺旋快速成像原理及网格重建算法.  相似文献   

19.
李聿为  肖亮 《波谱学杂志》2016,33(4):590-596
设计了一种基于现场可编程门阵列(FPGA)与直接数字频率合成(DDS)的磁共振成像(MRI)射频脉冲发生器,采用FPGA实现DDS,并内置软脉冲波形双端口随机存取存储器(RAM)、乘法器以及相关的控制逻辑.实现了较高的技术指标,其中频率、相位与幅度分辨率分别为32 bits、16 bits与16 bits,软脉冲波形的时间精度可达0.1?s.FPGA提供了一个可编程的接口,便于序列控制器对其进行控制,以输出射频脉冲.MRI实验结果证明了该设计的可行性.  相似文献   

20.
Magnetization transfer contrast imaging using turbo spin echo and continuous wave off-resonance irradiation was carried out on rat brainin vivoat 4.7 T. By systematically varying the off-resonance irradiation power and the offset-frequency, the signal intensities obtained under steady-state for both transverse and longitudinal magnetization were successfully analyzed with a simple binary spin–bath model taking into account a free water compartment and a pool of protons with restricted motions bearing a super-Lorentzian lineshape. Due to important RF power deposition, such experimental conditions are not practical for routine imaging on humans. An extension of the model was derived to describe the system for shorter off-resonance pulse duration, i.e., when the longitudinal magnetization of the free protons has not reached a steady-state. Data sets obtained for three regions of interest, namely thecorpus callosum,the basal ganglia, and the temporal lobe, were correctly interpreted for off-resonance pulse durations varying from 0.3 to 3 s. The parameter sets obtained from the calculations made it possible to predict the contrast between the different regions as a function of the pulse power, the offset frequency, and pulse duration. Such an approach could be extended to contrast prediction for human brain at 1.5 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号