首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
基于核四极矩共振(Nuclear Quadrupole Resonance, NQR)炸药探测原理,对探测系统中拾取信号的关键部件射频线圈进行了优化设计,并确定了小型螺线管型线圈的直径、长度和匝数. 试验测试表明,此线圈射频场均匀性好、信噪比大、灵敏度高,可以快速准确探测到NQR信号,验证了线圈设计理论的有效性和制作方法的可行性. 该设计方法对提高隐藏炸药探测的准确率以及不同试验条件下射频线圈的设计具有重要意义.  相似文献   

2.
何刚  王为民 《波谱学杂志》2017,34(3):338-346
介绍了高场磁共振成像(MRI)多源发射技术的原理,提出了一种用于高场MRI系统的多源射频信号发射机.它能并行输出多路频率、相位、幅度,可快速独立调节的射频脉冲信号.该射频发射机的实现基于单片现场可编程门阵列(FPGA)和多通道数模转换器(DAC)芯片,FPGA读取预存于双端口随机存取存储器(RAM)中的射频信号参数,并利用读取的参数分别实现每路信号的直接数字频率合成(DDS)和信号调制等核心功能,获得多路数字射频信号;FPGA输出的数字信号经过高性能DAC转化为模拟信号,即所需要的射频信号.该射频发射机在设计中大量采用软件无线电技术,即利用Xilinx提供的IP核实现DDS和信号调制等主要功能,具有集成度高、体积小、灵活度高的优点,同时,该设计可以大大缩短开发时间,有效降低实现的难度和成本,为高场MRI谱仪的多源射频发射机的设计研制提供了一种低成本、高效、高性价比的方案.  相似文献   

3.
介绍了一种用于开放式MRI系统的射频发射线圈. 此发射线圈为上下2个相同的线圈,分别安装在磁体的2极,两线圈采用非对称的正交方式放置. 线圈为矩形螺线管结构,通过电磁场数值计算的方法对线圈的匝间距进行了优化,使线圈在300 mm的球形区域内达到偏差不超过3 dB的均匀性要求. 根据优化结果制作了一套用于0.23 T开放式MRI系统的发射线圈,并对线圈的均匀性及射频发射的效率进行了测试. 测试结果表明,线圈具有较高的发射效率和较好的均匀性,由此验证了设计方案的可行性.  相似文献   

4.
射频场映像是通过一定算法对磁共振射频线圈的发射场进行重建的方法.高场下的射频场经过生物组织时会发生明显变化,在其基础上可以反演生物组织体内电特性,进而对癌症等疾病进行早期诊断,是对生物组织的磁共振结构成像的有力补充.目前为止,射频场映像和电特性研究都以高场鸟笼线圈为主,对低场下的相控阵研究较少.本文主要研究了低场永磁体磁共振射频场的均匀度.有限元仿真和实验验证了在17.8 MHz激励下,射频场在空载和负载下均匀度均发生较大变化.射频场均匀度在负载下的改变在一定程度上可以反映负载生物组织的电特性,对磁共振电特性实用化研究提供了一定的参考价值.  相似文献   

5.
磁共振成像(MRI)的磁体设计首先是确保中心成像区的场值和均匀性, 二是尽可能减少场值耗散的距离即漏磁5Gs 线. 基于此本文提出了一种线性与非线性规划联合优化的方法. 首先将导体作为基本单元, 在预布置线圈的空间范围内构建二维连续导体网格. 通过线性规划搜索满足磁场约束条件的网格电流分布图. 再将存在电流的网格离散为一个个矩形线圈区域, 在保证场值均匀性、 杂散场5 Gs 线范围以及线圈位置间隔、 导体超导线安全裕度的前提下利用非线性规划, 具体确定各个线圈的轴向和径向位置、 线圈内导体层数和各层匝数以及通电流大小等. 采用这种联合优化方法, 不仅节省优化时间, 还可以自行设计线圈形状有利于工程实现. 文中由此方法给出了14 T MRI 磁体的一种设计方案, 依靠4 组线圈使得45 cm 中心球形成像内不均匀度降低到5 ppm, 而高场耗散的5 Gs 线通过磁体自屏蔽减小到15 m 以内. 满足了设计的要求.  相似文献   

6.
李聿为  肖亮 《波谱学杂志》2016,33(4):590-596
设计了一种基于现场可编程门阵列(FPGA)与直接数字频率合成(DDS)的磁共振成像(MRI)射频脉冲发生器,采用FPGA实现DDS,并内置软脉冲波形双端口随机存取存储器(RAM)、乘法器以及相关的控制逻辑.实现了较高的技术指标,其中频率、相位与幅度分辨率分别为32 bits、16 bits与16 bits,软脉冲波形的时间精度可达0.1?s.FPGA提供了一个可编程的接口,便于序列控制器对其进行控制,以输出射频脉冲.MRI实验结果证明了该设计的可行性.  相似文献   

7.
设计了一种可用于超高场磁共振成像(MRI)的负磁导率超材料磁感应透镜(MIL),可以有效提高MRI的信噪比.MIL是由6×6个加载电容的金属开口谐振环组成的二维周期结构,并将其加工在一层0.6 mm厚度的FR-4介质基板上.将MIL放置于射频线圈和样品之间,能够实现等效的磁表面等离激元效应.MIL单元电磁场分布、散射参数和等效磁导率的仿真结果表明:所设计的MIL在拉莫尔进动频率297.2 MHz产生负的磁导率,并能增强由射频线圈产生的射频场的倏逝波分量.两个不同的标准表面射频线圈的MRI扫描实验表明,小水膜仿体在施加MIL后可以将矢状面图像信噪比提高约200%,大水膜仿体在施加MIL后可以将冠状面图像信噪比提高约58%.仿真和MRI图像结果均表明了所设计的MIL具有聚焦表面射频线圈磁场强度的能力,有益于提高MRI的信噪比、空间分辨率和探测深度.  相似文献   

8.
磁场的高均匀性是高性能核磁共振弛豫分析仪实现短弛豫时间样品和微弱信号核磁共振(NMR)检测的基本保障.该文以0.45 T双极型永磁体作为设计核心部件,在大范围磁体空间-25.4 mm球空间(DSV)内,基于目标场法设计了X、Y、Z、XY、XZ、YZ、Z2共7组有源匀场线圈,根据线圈供电要求,设计了可编程恒流电源,搭建了可用于高性能核磁共振弛豫分析仪磁体的有源匀场系统,介绍了系统的基本结构、设计过程及匀场方法.实验测试结果验证了大范围磁体空间内该匀场系统的实用性.  相似文献   

9.
在低场脉冲核磁共振实验中为了增大射频激励的带宽,通常采用的方法是提高射频激励磁场的场强. 针对共振区域中静磁场的不均匀性,本文提出了根据共振区域中的静磁场分布设计射频线圈以提高射频激励带宽,并用目标场方法实现了这一构想.   相似文献   

10.
磁共振成像(MRI)是一个能够探测样品内部特性的有效检测手段,已被广泛应用于化学、生物研究,以及医疗诊断领域. 自约40年前发展以来, 成像方法的不断发展使得MRI的成像分辨率、实验效率和成像杂核能力得到了很大的改进. 边缘磁场成像(STRAFI)是一种很具潜力的成像方法之一,它利用了超导磁体本身具有的边缘场的强梯度场. 该综述介绍了STRAFI基础,并概括了成像的基本原理、STRAFI的实验理论和方法及其在实际研究中的应用. 由此将比较STRAFI实验相对于传统MRI方法的所具有的优势和多面可行性.  相似文献   

11.
In clinical magnetic resonance imaging(MRI),the design of the radiofrequency(RF) coil is very important.For certain applications,the appropriate coil can produce an improved image quality.However,it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio(SNR) simultaneously.In this article,we design an interventional transmitter-and-receiver RF coil for cerebral surgery.This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery.The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field,a high SNR,and a large imaging range to meet the requirements of the cerebral surgery.  相似文献   

12.
The layout of radio-frequency received coils is related to signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI). In this paper, different structures of four-channel received coil arrays for vertical-field MRI are constructed and optimized by establishing the relationship between coil geometry and SNR to achieve a high SNR and a uniform SNR distribution in the region of interest (ROI). Then, the SNR distributions of three optimized configurations, including rectangular loops, non-definite shape surface coils, and solenoid loops as the main unit, are simulated and compared. The four-channel coil of solenoid loops as the main unit has been found to have the best performance with the highest mean SNR in the ROI when imaging without acceleration. In addition, g-factor and 2D SENSE SNR in yoz-plane are simply analyzed, which show a sharp decrease in SNR for all the coils. Finally, all the coils are manufactured and operated at a 0.5 T permanent magnet MRI system with phantom and joint imaging experiments. Using pixel-by-pixel manner to evaluate SNR map, the experimental results are consistent with the simulation results, while parallel imaging experiment results show that the major consideration in low field MRI is the improvement of SNR value and uniformity rather than that of the imaging speed. As different constructions of four-channel received coils are investigated, we have found the most effective configuration with high and uniform SNR for vertical-field MRI.  相似文献   

13.

Purpose

To investigate intracranial microvascular images with transceiver radio-frequency (RF) coils at ultra-high field 7 T magnetic resonance imaging (MRI).

Materials and methods

We designed several types of RF coils for the study of 7 T magnetic resonance angiography and analyzed quantitatively each coil's performance in terms of the signal-to-noise ratio (SNR) profiles to evaluate the usefulness of RF coils for microvascular imaging applications. We also obtained the microvascular images with different resolutions and parallel imaging technique.

Results

The overlapped 6-channel (ch) transceiver coil exhibited the highest performance for angiographic imaging. Although other multi-channel coils, such as 4- or 8-ch, were also suitable for fast imaging, these coils performed poorly in homogeneity or SNR for angiographic imaging. Furthermore, the 8-ch coil was poor in SNR at the center of the brain, while it had the highest SNR at the periphery.

Conclusion

The present study has demonstrated that the overlapped 6-ch coil with large-size loop coils provided the best performance for microvascular imaging or angiography with the ultra-high-field 7 T MRI, mainly because of its long penetration depth together with high SNR.  相似文献   

14.
Copper foil has been widely employed in conventional radio frequency (RF) birdcage coils for magnetic resonance imaging (MRI). However, for ultrahigh-field (UHF) MRI, current density distribution on the copper foil is concentrated on the surface and the edge due to proximity effect. This increases the effective resistance and distorts the circumferential sinusoidal current distribution on the birdcage coils, resulting in low signal-to-noise ratio (SNR) and inhomogeneous distribution of RF magnetic (B1) field. In this context, multiple parallel round wires were proposed as legs of a birdcage coil to optimize current density distribution and to improve the SNR and the B1 field homogeneity. The design was compared with three conventional birdcage coils with different width flat strip surface legs for a 9.4 T (T) MRI system, e.g., narrow-leg birdcage coil (NL), medium-leg birdcage coil (ML), broad-leg birdcage coil (BL) and the multiple parallel round wire-leg birdcage coil (WL). Studies were carried out in in vitro saline phantom as well as in vivo mouse brain. WL showed higher coil quality factor Q and more homogeneous B1 field distribution compared to the other three conventional birdcage coils. Furthermore, WL showed 12, 10 and 13% SNR increase, respectively, compared to NL, ML and BL. It was proposed that conductor’s shape optimization could be an effective approach to improve RF coil performance for UHF MRI.  相似文献   

15.
Applications of low-field magnetic resonance imaging (MRI) systems (<0.3 T) are limited due to the signal-to-noise ratio (SNR) being lower than that provided by systems based on superconductive magnets (≥1.5 T). Therefore, the design of radiofrequency (RF) coils for low-field MRI requires careful consideration as significant gains in SNR can be achieved with the proper design of the RF coil. This article describes an analytical method for the optimization of solenoidal coils. Coil and sample losses are analyzed to provide maximum SNR and optimum B1 field homogeneity. The calculations are performed for solenoidal coils optimized for the human head at 0.2 T, but the method could also be applied to any solenoidal coil for imaging other anatomical regions at low field. Several coils were constructed to compare experimental and theoretical results. A head magnetic resonance image obtained at 0.2 T with the optimum design is presented.  相似文献   

16.
Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B1 field distribution and high signal-to-noise ratio (SNR).We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective.Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B1 and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm×24 μm.  相似文献   

17.
Study of human pathologies and acquisition of anatomical images without any surgical intervention inside human body is possible because of magnetic resonance imaging (MRI), which is the keystone technique to characterize the psychology and neurochemistry of human body. However, for clinical trials, the study and cure of human diseases are followed by medical investigations of different animal anatomies. By employing different imaging techniques to animal anatomical models during their clinical trials yielded in exceptional image acquisition without any surgical invasion in the model, which resulted in noninvasive technique as compared to surgical invasion and opened the possibility to study human pathologies more precisely. This work exploits the notable properties of unique combination of multi-circular hybridized surface coils which can be used as hybridized magnetic metamaterial hat (HMMH). HMMH not only strengthens the uniformity of radio frequency (RF) rotational symmetry around its axis but also improves the signal-to-noise ratio (SNR) for rat’s brain imaging at 7-T MRI. We analyzed a periodic array of strongly coupled circular copper coils attached on circular coil shaped printed circuit board (PCB) substrate. In the design, some copper coils were inspired by the slot cavity loaded with parametric elements (capacitor and inductor). In addition, coils in the form of HMMH exploited the advantages of the hybrid modes which exhibited better and deeper RF sensitivity into the region of interest (ROI) as compared to single loop RF coil by exciting two Eigen modes simultaneously which resulted in homogenized magnetic field (B-field) and enhanced SNR at ROI. At resonance, the value of relative negative permeability, μ r  = ?7 + j11 was achieved at 300 MHz for 7-T MRI. Furthermore, image quality at ROI was optimized by varying rat’s head position under magnetic resonance (MR) coil of MRI apparatus and in the presence or absence of HMMH. Design configuration and circuit model analysis were also done.  相似文献   

18.
Sodium magnetic resonance (MR) imaging is a promising technique for detecting changes of proteoglycan (PG) content in cartilage associated with knee osteoarthritis. Despite its potential clinical benefit, sodium MR imaging in vivo is challenging because of intrinsically low sodium concentration and low MR signal sensitivity. Some of the challenges in sodium MR imaging may be eliminated by the use of a high-sensitivity radiofrequency (RF) coil, specifically, a dual-tuned (DT) proton/sodium RF coil which facilitates the co-registration of sodium and proton MR images and the evaluation of both physiochemical and structural properties of knee cartilage. Nevertheless, implementation of a DT proton/sodium RF coil is technically difficult because of the coupling effect between the coil elements (particularly at high field) and the required compact design with improved coil sensitivity. In this study, we applied a multitransceiver RF coil design to develop a DT proton/sodium coil for knee cartilage imaging at 3 T. With the new design, the size of the coil was minimized, and a high signal-to-noise ratio (SNR) was achieved. DT coil exhibited high levels of reflection S11 (~-21 dB) and transmission coefficient S12 (~-19 dB) for both the proton and sodium coils. High SNR (range 27-38) and contrast-to-noise ratio (CNR) (range 15-21) were achieved in sodium MR imaging of knee cartilage in vivo at 3-mm(3) isotropic resolution. This DT coil performance was comparable to that measured using a sodium-only birdcage coil (SNR of 28 and CNR of 20). Clinical evaluation of the DT coil on four normal subjects demonstrated a consistent acquisition of high-resolution proton images and measurement of relative sodium concentrations of knee cartilages without repositioning of the subjects during the same MR scanning session.  相似文献   

19.
为了提高低场磁共振成像系统的信噪比,提出了具有失谐电路的Bi2223带高温超导射频接收线圈.该线圈采用了电耦合方式传输超导谐振回路的磁共振信号,这种方式有利于进一步制成正交结构或相阵结构的超导接收线圈.为了防止趋肤效应降低超导接收线圈的性能,采用化学腐蚀的方法先将超导带的包套去掉,然后再制成超导主谐振电感.采用一种双探测线圈法对高温超导接收线圈和相同结构的常规铜线圈的Q值进行了测量,结果表明超导接收线圈比常规铜线圈的Q值约高一倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号