首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
水体COD的光谱学传感技术是现代环境监测的一个重要发展方向, 与传统的分析方法相比,光谱分析技术更具有可连续监测、可在线监测和检测快速的明显优势,适合对环境水样COD的定点实时监测。分别获取水样的紫外吸收光谱和近红外光谱,通过不同的光谱预处理方法结合偏最小二乘法、多元线性回归法建立水样的COD定量预测模型,对水体COD的紫外和近红外光谱的定量预测及相关模型参数进行分析,发现用S-G平滑处理后的紫外光谱和近红外光谱建立的PLS模型均得到最佳预测效果,预测集R2分别为0.992 1和0.987 7,RMSEP分别为10.438 6和5.972 0。紫外和近红外光谱法的MLR模型预测效果较差,预测集R2分别为0.928 0和0.957 3。通过实验结果综合对比分析,紫外吸收光谱在280~310 nm谱区建模预测性能较好,近红外光谱在7 250~6 870 cm-1谱区建模预测性能较好,紫外光谱对应定量预测模型的决定系数较高,而近红外光谱的稳定性和重复性更好。研究表明光谱传感技术可用于环境实际水体COD的定量预测分析,为开发便携式水体检测设备奠定了理论基础。  相似文献   

2.
为了实现对经过污水处理后的染整废水化学需氧量(COD)的在线监测,同时为了克服国标标准法和快速分光光度法快速在线检测COD的诸多不足,进行了紫外可见光谱结合多元分析方法检测混合染液COD的研究。研究样本为自行配制的混合染液,通过自主研发的紫外可见光纤传感检测系统检测混合染液的紫外可见光谱。该检测系统可实现对较高浓度溶液在线原位检测,而无取样、稀释过程。通过标准化(z-score)、平滑(smoothing)、一阶导数(1st derivation)等方法对原始光谱进行预处理并结合主成分回归(PCR)、偏最小二乘回归法(PLS)等对混合染液建立吸光度-COD的回归预测模型,并利用该回归模型预测预测集COD值。实验结果表明,针对混合染料溶液样本,在PCR算法中,采用3种光谱预处理方法,其中标准化法得到的PCR回归模型预测精度最高,决定系数R2=0.961,预测均方根误差(root mean square error of prediction,RMSEP)=21.8。进一步研究发现,使用标准化法预处理结合PLS算法得到PLS回归模型预测精度(R2=0.974,RMSEP=19.6)高于PCR模型。说明针对该样本,利用标准化法进行光谱预处理后,再建立PLS回归模型,能够比较快速准确地进行混合染液COD预测。同时也说明该自行研制的检测系统能够适用在线检测染液COD。该研究可以为进一步实现在线原位检测染整废水COD以及其他水质参数奠定基础。  相似文献   

3.
为了探究反射光谱检测水体中毒死蜱农药的可行性,使用由ASD公司的FieldSpecPro地物波谱仪构成的高光谱采集系统在室内、室外环境获取两种不同浓度区间的毒死蜱样品的光谱数据。基于偏最小二乘(PLS)和主成分分析(PCA)算法分别对毒死蜱样品光谱数据建立全波段定量模型,结果两种模型的预测能力均较高。通过相关性分析(CA)计算相关系数来选择毒死蜱样品光谱的特征波长,其中浓度区间为5~75 mg·L-1的室内、室外实验光谱的特征波长为388,1 080,1 276 nm和356,1 322,1 693 nm,浓度区间为0.1~100 mg·L-1的室内外实验样品光谱的特征波长为367,1 070,1 276,1 708 nm和383,1 081,1 250,1 663 nm。结合PLS算法建立样品特征波长光谱数据的定量模型,结果与全波段模型相比,浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波长模型的校正集决定系数R2C分别提高至0.987 5和0.999 2,预测集决定系数R2P分别提高至0.989 4和0.994 4,校正集均方根误差RMSEC分别降低为2.841和0.714,预测集均方根误差RMSEP分别降低为1.715和1.244;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波长PLS模型的校正集决定系数R2C分别提高至0.998 3和0.998 8,预测集决定系数R2P分别提高至0.998 4和0.999 0,校正集均方根误差RMSEC分别降低为1.383和1.186,预测集均方根误差RMSEP分别降低为1.510和1.229,验证集标准差与预测均方根误差的比值(RPD)有所增加,尤其是针对浓度区间为0.1~100 mg·L-1的实验,RPD值显著增加至21.7,说明基于特征波长建立的毒死蜱样品定量模型具有较高精度的预测能力,但是通过不同浓度区间范围的对比实验发现,ASD地物光谱仪对低浓度的毒死蜱溶液预测的相对误差偏大,存在客观上的检测下限。为了保证不同试验条件下的毒死蜱农药的特征波长都得到分析,增强模型使用的普适性与鲁棒性,根据特征波长选择出4个波段,即351~393,1 065~1 086,1 245~1 281和1 658~1 713 nm作为特征波段。特征波段模型的波长变量个数共38个,相比于全波段模型的432个波长变量,模型变量精简了91.2%,其中浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波段模型的R2C分别为0.993 7和0.987 8,R2P分别为0.979 8和0.998 2,RMSEC分别为1.690和2.516,RMSEP分别为1.987和0.659;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波段PLS模型的R2C分别为0.9882和0.9807,R2P分别为0.9391和0.9936,RMSEC分别为3.345和3.942,RMSEP分别为8.996和2.663,且四种实验情况下的模型RPD值均大于2.5,满足定量分析条件。因此采用高光谱采集系统对室内和室外环境中毒死蜱农药的快速检测具有一定的可行性,此研究结果对有机磷农药等面源污染物快速检测有实际的应用价值,可为农田水体有机磷农药快速检测仪器的开发提供理论基础。  相似文献   

4.
土壤养分的红外衰减全反射与漫反射光谱同步测量方法   总被引:3,自引:0,他引:3  
光谱学分析技术因具有快速、实时、无损等优势,被广泛用于土壤养分检测等各个领域,也是现代农业检测控制中广泛应用的一种有效方法。实验采集不同养分含量的土壤样本,分别获取中红外衰减全反射(ATR)和漫反射(DRIFT)光谱数据。通过不同的光谱预处理算法结合偏最小二乘法(PLS)建立土壤中全碳、全氮、碱解氮的定量分析模型,对土壤养分的ATR和DRIFT光谱分别进行独立模型和叠加模型的分析。并以土壤养分中的全碳和全氮为例,发现经过标准正态变量变换处理的两种光谱建立的PLS模型相关系数均有所提高。全碳的两种光谱模型校正集的R2分别提高至0.826和0.919,而全氮两种模型校正集R2分别提高至0.841和0.928。我们进一步对全碳、全氮各自叠加后的光谱进行分析,模型的R2分别提高至0.942和0.951。用同样的方法分析土壤中的碱解氮,联用两光谱后的R2提高至0.919。研究结果表明,两种光谱的联合使用,为提高模型的相关系数和预测能力提供了一种合理有效的方法。  相似文献   

5.
热值是煤质特性的重要参数之一,很大程度上影响着燃煤锅炉的运行。为了克服传统检测方法所存在的问题,将激光诱导击穿光谱(LIBS)应用于燃煤热值的定量分析。煤的结构复杂,所含的元素种类众多,包括了主量元素、次量元素和痕量元素,致使煤的LIBS光谱信息复杂。如何有效提取LIBS光谱信息,实现准确的定量化测量是LIBS在煤特性检测中发挥作用的前提和基础。近年来,随着人工智能技术的发展,相关的分析技术也开始应用于煤的工业指标分析和热值预测中。为实现煤样品中LIBS光谱信息的有效提取,同时为克服常规的分析方法易出现的过渡拟合、收敛性不好等问题,提出采用结合K-fold Cross Validation(K-CV)参数优化的支持向量机(SVM)回归方法,实现LIBS定量分析煤中的热值。SVM方法是结构风险最小化的近似实现,可用于模式分类和非线性回归。为了得到有效的LIBS分析模型,实验选用44种电厂常用的热值含量不同的煤样作为实验对象,选择其中33个作为训练集,剩余11个为测试集。利用搭建的LIBS实验系统获取所选煤样品的等离子体发射光谱数据,首先分析了SVM热值回归模型的参数-惩罚因子C、核函数参数g与模型精度的关联,确定Cg最佳取值范围,然后分别建立了基于LIBS全谱和某些元素(非金属元素和金属元素)特征光谱的SVM回归模型。利用训练集光谱数据,结合K-CV法得到热值SVM回归模型的最优参数Cg的值,建立基于SVM最优参数的煤热值定量分析模型。然后将测试集的光谱数据作为输入量用于测试所建立模型的可靠性,得到分别采用全谱、非金属元素特征光谱、非金属与金属元素特征谱相结合的热值定量分析模型,其决定系数R2均达到0.99以上,均方误差分别为0.12,0.17和0.06 (MJ·kg-1)2,预测平均相对偏差分别为1.2%,1.23%和0.69%。结果表明:基于K-CV参数优化SVM回归方法可用于LIBS技术实现燃煤热值的定量分析,且可得到较高的分析精确度和准确度;同时通过对比选用不同的光谱特征的定量分析模型可知,采用非金属与金属元素的特征光谱所建立的基于K-CV参数优化SVM的热值定量模型,能够有效提高LIBS应用于快速检测煤热值的精度和准确度,实现煤热值的准确预测。  相似文献   

6.
基于分数阶微分算法的大豆冠层氮素含量估测研究   总被引:3,自引:0,他引:3  
氮素与作物的生长发育、产量和品质密切相关。作物冠层氮素含量的快速、准确、无损检测对于作物营养诊断和长势评估具有重要意义。传统的氮素检测方法检测周期长、操作复杂,同时具有破坏性,无法实现作物氮素含量在时间和空间上的连续动态监测。基于光谱遥感技术快速、无损地获取作物氮素含量是近年来作物组分快速检测研究的热点。当前的研究大多基于原始光谱或整数阶微分(一阶、二阶)预处理后的光谱进行氮素含量预测,原始光谱或整数阶微分预处理后的光谱会忽略光谱曲线间的渐变信息,影响氮素含量的预测准确度。与原始光谱和整数阶微分方法相比,分数阶微分算法在背景噪声去除、有效信息提取等方面较有优势。为研究分数阶微分预处理算法在作物氮素检测中的应用,本文以不同施肥处理下的盆栽大豆作物为研究对象,获取大豆苗期、花期、结荚期和鼓粒期四个生育期共256组冠层高光谱及对应的大豆冠层氮素含量(CNC)数据,运用分数阶微分算法对光谱数据进行0~2阶微分预处理,微分间隔为0.1,分别采用归一化光谱植被指数NDSI、比值光谱指数RSI对预处理后的光谱数据和大豆冠层氮素含量数据进行相关性分析,得到各阶微分预处理下NDSIα(α代表分数阶微分阶数)与大豆CNC,RSIα与大豆CNC相关系数绝对值的最大值及其对应的波段组合--最优波段组合NDSIα(opt)和RSIα(opt),采用线性回归方法,建立各阶微分下NDSIα(opt)与CNC,RSIα(opt)与CNC的预测模型,并与常用植被指数(VOGII, MTCI, DCNI, NDRE)建立的氮素含量预测模型进行比较,研究分数阶微分算法对大豆作物冠层氮素含量预测模型的效果。结果表明:(1)在0~2阶微分范围内,最优波段组合NDSIα(opt),RSIα(opt)与大豆CNC的相关系数随阶数增加呈现先升高后下降趋势。其中,0.8阶微分下NDSI0.8(R725, R769)与大豆CNC的相关系数最大,为0.875 9;0.7阶微分下RSI0.7(R548, R767)与大豆CNC的相关系数最大,为0.865 1;(2)分数阶微分预处理能够细化光谱数据中的有效信息,增强光谱数据对冠层氮素含量的敏感性,尤其是增强红边平台波段与氮素含量的正相关性及绿波段与氮含量的负相关性;(3)与整数阶微分、常用植被指数相比,分数阶微分能够提高大豆CNC预测模型的准确性。其中,基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与0阶微分RSI0(R725, R769)相比建模集决定系数(R2C)和预测集决定系数(R2P)分别提高了0.061 9和0.016 6,建模集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别降低了0.552 5和0.180 9,预测相对偏差(RPD)提高了0.110 4。基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与VOG II相比R2CR2P分别提高了0.086 6和0.025 5,RMSEC和RMSEP分别降低了0.757 5和0.248 3,RPD提高了0.146 88;(4)基于0.7阶微分比值光谱指数RSI(R548, R767)建立的大豆LNC预测模型较优,其R2C为0.748 4,R2P为0.800 3,RMSEC为4.752 9,RMSEP为3.511 1,RPD为2.253 7,能够较好的估测大豆冠层氮素含量。研究表明分数阶微分算法在大豆冠层氮素含量的定量预测中具有一定的优势,为光谱遥感技术在作物氮营养检测中的应用开拓了新的思路。  相似文献   

7.
为了提高铝合金定量分析的精度,将激光诱导击穿光谱技术与多变量线性回归、中值高斯核支持向量机回归及标准化偏最小二乘回归等方法相结合,建立铝合金中 Cu元素定量分析模型。对采集的LIBS光谱进行三阶极小值去背景和小波阈值降噪处理,从而提高LIBS光谱的信背比。将处理后数据筛选最佳训练集、预测集并用多变量线性回归、中值高斯核支持向量机回归法和标准化偏最小二乘拟合回归等建立定标模型。选用 Cu Ⅰ 324.80 nm,Cu Ⅰ 327.43 nm两条特征谱线以及323~329 nm范围内的LIBS光谱数据进行定量分析,对比分析三种LIBS定量分析模型的拟合系数(R2)、定标均方根误差(RMSEC)、预测均方根误差(RMSEP)和平均相对误差(ARE)等。结果表明,相对于多变量线性回归和中值高斯核支持向量机回归法两种LIBS定量分析模型,对于铝合金中的Cu元素定量分析,标准化PLSR模型的精度和准确度都有明显的提高,并且LIBS定标曲线的R2,RMSEC,RMSEP和ARE分别为0.997,0.014 Wt%,0.129 Wt%和3.053%。研究结果表明在提高定标模型精确度与泛化性方面,标准化PLSR方法更具有优势,能够有效地减小参数波动和自吸收效应对铝合金定量分析的影响。  相似文献   

8.
当近红外光谱信息远大于样本量时,对光谱信息进行自动变量选择进而建立光谱与样品含量的稀疏线性模型重要且具有挑战性。利用近红外光谱,将变量选择方法Elastic Net用于聚苯醚生产过程中微量成分邻甲酚的测量,建立近红外光谱与邻甲酚含量之间的定量校正模型,并将其模型预测效果与Lasso方法进行对比。在变量数目远远大于样本量的情形下,Lasso方法虽可实现变量选择,但由于对系数的过度压缩,使得模型的预测精度受到影响,而Elastic Net通过增加L2惩罚项避免了过多删失数据,可以提高模型预测精度。为了验证Elastic Net方法的模型性能指标,用复相关系数R2和调整的复相关系数R2a来评价模型的可解释性,利用平均相对预测误差MRPE(mean relative prediction error)和预测相关系数Rp来评价模型的预测精度。Lasso方法建立的模型性能指标为:R2=0.94,R2a=0.93,MRPE=4.51%,Rp=0.96;Elastic Net方法的性能指标为:R2=0.97,R2a=1,MRPE=3.25%,Rp=0.98。结果表明,Elastic Net所建立模型的性能指标优于Lasso方法,可以得到可解释性较强和预测精度较高的稀疏线性模型。  相似文献   

9.
采用近红外漫反射光谱法对黄芪中毛蕊异黄酮葡萄糖苷和黄芪甲苷的含量进行快速无损检测。以液相色谱质谱联用分析值为参比,采用偏最小二乘法建立黄芪中毛蕊异黄酮葡萄糖苷和黄芪甲苷的定量分析模型。结果显示,毛蕊异黄酮葡萄糖苷近红外光谱经多元散射校正(MSC)+一阶导数+Savitzky-Golay卷积平滑预处理后模型最优,模型参数R2为0.826 6,RMSEP值为0.022 7,校正集R2为0.863 5,RMSEC值为0.019 0;黄芪甲苷近红外光谱经二阶导数+Savitzky-Golay卷积平滑预处理后模型最优,模型参数R2为0.854 8,RMSEP值为0.006 41,校正集R2为0.796 3,RMSEC值为0.007 99。近红外光谱技术结合偏最小二乘法可快速、准确的对黄芪中毛蕊异黄酮葡萄糖苷和黄芪甲苷的含量进行检测。此外,通过主成分分析,发现甘肃产黄芪与其他产地黄芪差异不大,排除甘肃产黄芪后,山西、四川和吉林的样本区分度较高。  相似文献   

10.
在水体重金属激光诱导等离子体光谱定量分析中,一般提取光谱的多个特征变量进行浓度反演,但变量之间所包含的光谱信息可能存在重叠,回归模型的复杂程度也随之增大。为提取有效特征变量,研究了基于偏最小二乘法(PLS)的变量筛选方法。该方法以待测元素浓度为因变量,多个与待测元素浓度相关的LIBS光谱特征值为自变量,进行PLS建模;依据各原始变量的投影重要性指标值进行变量筛选,提取最优变量子集。结果表明湖库水体中Pb元素的最优变量子集为Pb Ⅰ 405.78 nm峰值及峰值前相邻点光谱值、内标校正值和信背比值,训练集的复相关系数R2m=0.912。以优化变量组合进行PLS回归分析,测试集预测结果的RSD和RE分别为10.2%和7.9%,显著优于内标法的预测结果。结果还表明,变量筛选结果对于不同元素和不同水样具有一定适用性。研究结果为水体重金属LIBS定量分析提供了优质特征数据,研究方法为其他涉及变量筛选的定量分析提供了参考。  相似文献   

11.
水体化学需氧量(COD)是一个重要的水体质量指标,一般用来衡量有机物的污染程度。对COD的检测长期依赖采样后的实验室化学分析方法,目前应用最普遍的是重铬酸钾氧化法与酸性高锰酸钾氧化法。化学分析的方法操作复杂,耗时费力,且引入新的化学药剂,造成二次污染,因此,急需一种能够实现水体COD快速测量的检测技术。在前期研究基础上,对水体COD的激光诱导击穿光谱检测方法进行深入探索,重点是优化模型预测速度,目的是研究激光诱导击穿光谱技术用于对水体COD的快速测量方法。采集了不同COD浓度的99个水体样本,分为训练集和测试集两组,通过重铬酸钾氧化法测定各水样的COD值,作为真实值,利用实验室自建的激光诱导击穿光谱采集系统采集各水样波长在200~1 000 nm的光谱信息,利用偏最小二乘算法建立训练集水样COD的定量化测量模型,然后对测试集光谱数据进行预测,将预测结果与实验室化学方法测定的真实值进行对比,评估预测效果。通过对原始光谱建立的预测模型进行分析,发现在建模过程中,大量的激光诱导击穿光谱数据与COD浓度相关性很差,而这些无用数据参与计算,浪费了计算资源,延长了检测时间,造成系统负载过大,不利于便携式检测设备的开发。重点研究贡献度最大的前几个主成分,通过对COD测量原理和PLS模型载荷分析,找到LIBS光谱中与水样COD浓度相关性最高的主要特征峰,经过分析发现,主要为来源于水中有机物中的C,H,O,N以及水中一些还原性离子元素的特征峰,这些特征峰对COD的模型预测能力贡献最大,而COD的定义正是衡量水体中这些元素的多少,这与该研究分析结论相吻合。为了实现检测速度的提升,提取这些特征峰,对光谱数据进行降维,剔除大量无关或相关性较低的数据,经过多次筛选和降维,最终将原来参与计算的每条光谱的13 622个数据降到28个,大大降低系统的运算量,却依然能够保留不错的预测能力。筛选出的28个特征波长最能反映水体COD浓度,为水体COD便携式的多波段检测设备的研发,实现对COD的快速测量奠定了基础。  相似文献   

12.
水是一种有限的资源,对农业、工业乃至人类的生存都是必不可少的,良好的水环境是可持续发展的重要保障。对水质信息的科学监测,是实现水资源优化配置与高效利用的基础。联合国环境署(UNEP)与世界卫生组织(WHO)指出,应当加强发展中国家的水质监测网络,包括数据质量的保证和分析能力的提高。光谱法作为一种新兴的水质分析方法,相比传统的化学水质监测方法,具有“响应速度快、多参数同步、绿色无污染”的特点。传统单波长、多波长的线性模型依赖于水体对特定波长的吸收特征,不适用于多组分混合溶液且普适性较差。因此,提出了一种基于IERT的非线性全光谱定量分析算法,建立适用于多组分混合溶液浓度预测模型,达到利用全光谱信息来预测浓度信息的目的。利用实验室配置的COD,BOD5和TOC多组分混合溶液与NO3-N、浊度、色度多组分混合溶液作为实验样本,使用光谱仪采集样本的光谱曲线,通过全光谱数据进行浓度预测实验,结果显示,对于COD,BOD5和TOC多组分混合溶液,本算法对于三种组分的决定系数(R2)分别为0.999 3,0.991 4和0.999 3,均方根误差(RMSE)分别为0.024 4,0.057 7和0.000 4;对于NO3-N、浊度、色度多组分混合溶液,决定系数(R2)分别为0.983 4,0.868 4和0.981 0,均方根误差(RMSE)分别为0.100 5,0.326 4和0.120 2。通过对比本算法与偏最小二乘(PLS)、支持向量机回归(SVR)、决策树(DT)、极端随机树(ERT)对于同一组数据的实验结果,表明:在两组多组分混合溶液的实验中,本算法对于其中各组分的决定系数(R2)均为最优,相比于其他对比算法均方根误差(RMSE)均有大幅减少。本算法可利用光谱信息对多组分混合溶液进行定量分析,在计算时间相当的情况下,可有效的提高浓度预测精度,减少定量分析的均方根误差,可为光谱法水质监测提供一种新的有效途径。  相似文献   

13.
激光诱导击穿光谱(LIBS)具有实时、远程、多元素同时分析的优点,近年来在工业在线分析领域逐渐受到关注,发挥着重要作用。但基于发射光谱本身的特性,LIBS存在光谱噪声、基线漂移、自吸收和重叠峰等现象;又由于环境变化、激光能量波动、基体效应、样品表面形貌等因素,造成光谱稳定性和重现性差。这些问题导致光谱信息与定性、定量分析之间呈非线性关系,限制了分析灵敏度和准确度。随着LIBS器件稳定性的逐渐改善,LIBS光谱数据分析方法日新月异,人工神经网络(ANN)能跟踪和识别非线性特性,自适应学习LIBS光谱特征,筛除干扰信息,在LIBS数据分析领域的应用得到飞速发展。介绍了LIBS原理、仪器结构和工作流程以及在LIBS光谱分析领域常见的神经网络模型,总结出2015年-2020年LIBS结合常见的ANN模型在地质、合金、有机聚合物、煤炭、土壤及生物等领域的具体应用,指出ANN在数据分析领域的超强能力可有效改进LIBS分析精度,提升光谱数据利用率,降低光谱采集环境要求。针对仍然有待突破的技术难点,展望了ANN在LIBS光谱深度信息挖掘、便携式专用型设备开发、技术联用等方面的发展前景。LIBS日趋成熟,但其数据分析领域仍有广阔发展空间。该综述可为机器学习在LIBS数据分析领域的应用提供参考。  相似文献   

14.
我国铁路跨度长、运营时间长、运行环境变化较大,故对于车轮的磨损较大,为保障高速铁路的安全运行,高速列车车轮表面硬度就成为了一项重要参考指标。激光诱导击穿光谱(LIBS)实验平台对8块不同硬度的HS7高铁车轮用钢样品进行击穿获取LIBS光谱数据,发现基体元素(Fe)和合金元素(Cr,Mo,W)的谱线强度、离子与原子线的强度比值(Ⅱ/Ⅰ)以及合金元素谱线强度与基体元素谱线强度的强度比值(A/M),分别与样品硬度有着不同程度的相关关系。利用此相关关系分别建立了以谱线强度和谱线强度结合谱线强度比值为变量的偏最小二乘法(PLS)定量分析模型,在建立模型前采用标准正态变量变换(SNV)、Savitzky-Golay卷积二阶导和高斯滤波(Gaussian filter)三种预处理方法来减小实验误差。结果表明,以谱线强度为变量的模型中采用SNV预处理后建立的PLS模型效果最佳,校正集的确定系数为0.98,均方根误差为1.30,预测集的确定系数为0.90,均方根误差为2.43;以谱线强度结合谱线强度比值为变量的模型中采用原始数据建立的PLS模型效果最佳,校正集的确定系数为0.99,均方根误差为0.79,预测集的确定系数为0.94,均方根误差为2.44,且通过对比发现以谱线强度结合谱线强度比值为变量的模型其预测精确度及其稳定性相比于以谱线强度为变量的模型均有所提升。该结果表明,利用谱线强度和离子与原子线的强度比、合金元素谱线强度与基体元素谱线强度的强度比相结合的结果作为模型变量,能显著提升PLS模型对于金属材料表面硬度预测的能力,可以构建一种相关性更强的定量分析模型。研究表明,采用激光诱导击穿光谱技术结合偏最小二乘法定量分析高铁车轮硬度具有一定可行性,可将该技术应用于现场诊断、估算高速列车车轮表面硬度,为维持高速列车安全运行提供一定的保障。  相似文献   

15.
水体中过高浓度的有机污染物含量危害巨大,不仅会造成严重的环境污染,而且会危害人类身体健康。化学需氧量(COD)表征了水体中有机污染物的污染程度。提出了一种将紫外(UV)光谱和近红外(NIR)光谱进行多光谱数据级融合(LLDF)和特征级融合(MLDF),进而构建基于生成对抗式网络(GANs)算法的COD浓度定量预测模型。首先按照一定的浓度梯度配制COD标准液样本,分别采集标准液的UV光谱(190~310 nm)和NIR光谱(830~2 100 nm),对获取到的UV和NIR光谱数据进行一阶导数和Savitzky-Golay (S-G)平滑的预处理,消除基线漂移和干扰噪声;基于预处理过的光谱,直接进行数据级和特征级的数据融合,结合GANs算法搭建COD浓度预测模型。并使用评价参数相关系数的平方(R2)、预测值与真实浓度值的均方根误差(RMSEP)和预测偏差来对模型进行评价。结果表明,不论是特征级融合模型还是数据级融合模型都不够理想。分析原因可知,由于UV和NIR波段数据量不均衡,导致NIR波段掩盖掉了UV光谱的模型贡献度,让光谱融合失去意义。为了避免融合失败,拟采用归一化的方法处理多光谱数据,并讨论了标准归一化(SNV)、最大最小归一化(MMN)和矢量归一化(VN)对建模的影响。将经过归一化后的UV和NIR光谱数据再次进行融合,分别作为GANs模型的输入X,将真实测量COD值作为输出值Y,建立不同归一化方法处理后的COD浓度预测模型。建模结果显示,采用不同归一化方法对多光谱数据融合模型的影响较大,不论是数据级融合模型还是特征级融合模型的预测精度较未归一化之前有明显的提升,其中采用最大最小归一化的预测模型效果提升最为明显。与单一谱源的全波长UV波段的GANs预测模型、全波长NIR波段的GANs预测模型进行对比来验证多光谱数据融合GANs预测模型的精度,结果表明:基于UV和NIR光谱的特征级光谱融合模型的R2为0.994 7,RMSEP为0.976,比数据级融合的预测模型误差降低了52.9%,预测回收率为98.4%~103.1%,远好于其他几组,模型的泛化能力更强,预测精度也更高。与单一谱源的预测模型相比,多光谱数据融合能反应更多的水体样品的化学信息,更加全面揭示水体的污染物程度,从不同的层面上反应水体中污染物的差异,为在线监测水体中COD浓度提供一定的技术支持。  相似文献   

16.
太赫兹时域光谱不但包含了样品的化学信息和物理信息,还承载了设备噪声、样品状态、环境参数等多方面的背景信息,其光谱的多元性可能影响模型的性能,降低预测精度。能否在复杂、重叠、变动背景下从光谱数据中提取目标组分的特征信息,去除冗余变量,筛选特征谱区,对太赫兹光谱定量、定性分析至关重要。以L-酒石酸为研究对象,在室温下采集6个浓度:10%,20%,40%,50%,60%和80%,共计342个样本的L-酒石酸太赫兹吸收光谱。利用密度泛函理论(DFT)中的B3LYP方法,基于6-31G*(d,p)基组对L-酒石酸单分子模型进行优化并对其太赫兹频谱特性进行理论模拟计算,分析对应特征波峰的分子振动模式,得到0.2~1.6 THz频段吸收谱。与实测吸收谱进行对比,实验所测结果与理论计算结果对应的吸收峰位置基本吻合。采用自举软缩减法(BOSS)对L-酒石酸的太赫兹吸收谱进行特征谱区筛选,并与竞争性自适应加权采样(CARS)、蒙特卡洛无信息变量消除法(MC-UVE)和间隔区间偏最小二乘法(iPLS)3种经典特征谱区筛选法进行对比,分析结果显示BOSS算法选取的有效谱区与DFT理论计算特征谱区重合度最优。分别使用全谱PLS,CARS-PLS,MC-UVE-PLS,iPLS及BOSS五种算法对L-酒石酸光谱进行建模回归分析,实验结果表明,四种谱区筛选方法相较于全谱PLS模型,预测精度均有所提高,其中BOSS算法预测能力提高最为显著,其交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)、训练集决定系数(R2train)和测试集决定系数(R2test)分别为0.026 0,0.026 0,0.988 1和0.987 5,相较其他模型有更高的预测精度和模型稳定性,为实现基于太赫兹光谱技术的快速定量检测提供了一种有效的方法。  相似文献   

17.
应用激光诱导击穿光谱(LIBS)对脐橙中Cu元素进行快速检测,并结合偏最小二乘法(PLS)进行定量分析,探索光谱数据预处理方法对模型检测精度的影响。针对实验室污染处理后的52个赣南脐橙样品的光谱数据,进行不同数据平滑、均值中心化和标准正态变量变换三种预处理方法。然后选择包含Cu特征谱线的319~338 nm波段进行PLS建模,对比分析了模型的主要评价指标回归系数(r)、交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)。采用13点平滑、均值中心化的PLS模型3个指标分别达到了0.992 8,3.43和3.4,模型的平均预测相对误差仅为5.55%,即采用该前处理方法模型的校准质量和预测效果都最好。选择合适的数据前处理方法能有效提高LIBS检测果蔬产品PLS定量模型的预测精度,为果蔬产品LIBS快速精准检测提供了新方法。  相似文献   

18.
采用激光诱导击穿光谱(LIBS)技术对大豆油中的铁(Fe)含量进行定量检测。实验中用一系列不同Fe浓度的大豆油样品,采用二通道高精度光谱仪采集其LIBS光谱信号。根据样品LIBS谱线图,确定了Fe的两个特征谱线404.58和406.36 nm,并应用不同的一元回归方法对两个特征谱线分别建立一元指数回归定量分析模型、一元线性回归定量分析模型和一元二次回归定量分析模型。研究结果表明,Fe Ⅰ 404.58及Fe Ⅰ 406.36的一元指数、一元线性及一元二次回归模型的预测平均相对误差分别为29.49%,8.93%,8.70%和28.95%,8.63%,8.44%。Fe Ⅰ 406.36建立的回归模型预测结果优于Fe Ⅰ 404.58,三个回归模型中一元二次回归模型性能最优。由此可见,LIBS技术检测大豆油中的Fe元素具有一定的可行性,一元二次回归定量分析模型可以有效提高Fe元素预测浓度的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号